Optimizing the CGMS upper bound on Ramsey numbers (2024)

Parth Gupta, Ndiamé Ndiaye,Sergey Norin, and Louis WeiDepartment of Mathematics and Statistics, McGill University, Montréal, QC, Canada.

Abstract.

In a recent breakthrough Campos, Griffiths, Morris and Sahasrabudhe obtained the first exponential improvement of the upper bound on the diagonal Ramsey numbers since 1935. We shorten their proof, replacing the underlying book algorithm with a simple inductive statement. This modification allows us to

  • give a very short proof of an improved upper bound on the off-diagonal Ramsey numbers, which extends to the multicolor setting,

  • clarify the dependence of the bounds on underlying parameters and optimize these parameters, obtaining, in particular, an upper bound

    R(k,k)(3.8)k+o(k)𝑅𝑘𝑘superscript3.8𝑘𝑜𝑘R(k,k)\leq(3.8)^{k+o(k)}italic_R ( italic_k , italic_k ) ≤ ( 3.8 ) start_POSTSUPERSCRIPT italic_k + italic_o ( italic_k ) end_POSTSUPERSCRIPT

    on the diagonal Ramsey numbers.

PG, NN and SN were partially supported by NSERC Discovery Grant. PG was also supported by an ISM Undergraduate Research Scholarship.

1. Introduction

The Ramsey number R(k,)𝑅𝑘R(k,\ell)italic_R ( italic_k , roman_ℓ ) is the smallest positive integer N𝑁Nitalic_N such thatin any red-blue coloring of the edges of the complete graph on N𝑁Nitalic_N vertices there exists either a complete subgraph on k𝑘kitalic_k vertices with all edges colored red (a red Kksubscript𝐾𝑘K_{k}italic_K start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT) or a complete subgraph on \ellroman_ℓ vertices with all edges colored blue (a blue Ksubscript𝐾K_{\ell}italic_K start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT).Ramsey numbers were introduced by Ramsey [Ram30] in 1930, and the problem of estimating their value has been one of the central questions in extremal combinatorics ever since, with particular attention paid to the diagonal Ramsey numbers R(k,k)𝑅𝑘𝑘R(k,k)italic_R ( italic_k , italic_k ).

Erdős and Szekeres [ES35] proved that R(k,k)4k𝑅𝑘𝑘superscript4𝑘R(k,k)\leq 4^{k}italic_R ( italic_k , italic_k ) ≤ 4 start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT in 1935. Despite a series of important improvements [Con09, Sah23, Tho88] throughout the years, based on the quasirandomness properties of colorings close to the upper bound, the first exponential improvement of the Erdős-Szekeres bound was obtained only very recently in a breakthrough result by Campos, Griffiths, Morris and Sahasrabudhe [CGMS23].They proved that that there exists ε>0𝜀0\varepsilon>0italic_ε > 0 such that

R(k,k)(4ε)k𝑅𝑘𝑘superscript4𝜀𝑘R(k,k)\leq(4-\varepsilon)^{k}italic_R ( italic_k , italic_k ) ≤ ( 4 - italic_ε ) start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT(1)

for sufficiently large k𝑘k\in\mathbb{N}italic_k ∈ blackboard_N. While they mention that they have not attempted to seriously optimize the value of ε𝜀\varepsilonitalic_ε, focusing instead on a relatively simply proof, they show that (1) is satisfied with ε=27𝜀superscript27\varepsilon=2^{-7}italic_ε = 2 start_POSTSUPERSCRIPT - 7 end_POSTSUPERSCRIPT. For the off-diagonal Ramsey numbers, Campos, Griffiths, Morris and Sahasrabudhe [CGMS23] establish

R(k,)e/400+o(k)(k+)𝑅𝑘superscript𝑒400𝑜𝑘binomial𝑘R(k,\ell)\leq e^{-\ell/400+o(k)}\binom{k+\ell}{\ell}italic_R ( italic_k , roman_ℓ ) ≤ italic_e start_POSTSUPERSCRIPT - roman_ℓ / 400 + italic_o ( italic_k ) end_POSTSUPERSCRIPT ( FRACOP start_ARG italic_k + roman_ℓ end_ARG start_ARG roman_ℓ end_ARG )(2)

for all k,𝑘k,\ell\in\mathbb{N}italic_k , roman_ℓ ∈ blackboard_N with k𝑘\ell\leq kroman_ℓ ≤ italic_k, which again improves the best previously known bound [Sah23] by an exponential factor.

The approach of[CGMS23] diverts from the previous methods and does not involve any notion of quasirandomness. Instead, it centres on the book algorithm, which works with a pair of disjoint sets of vertices (X,Y)𝑋𝑌(X,Y)( italic_X , italic_Y ) with high density of red edges between them. Perhaps the most technical part of the algorithm is the way the changes in this density are controlled, regulated by a certain discrete logarithmic gradation of the interval [p,1]𝑝1[p,1][ italic_p , 1 ], where p𝑝pitalic_p is approximately the initial density.

In an attempt to clarify the extent of applications of the approach of[CGMS23], as well as the underlying optimization involved, we present a simpler proof of improved upper bound on Ramsey numbers, based on a reinterpretation of their method. We don’t introduce any new combinatorial ideas. (In fact, we show that for <0.69k0.69𝑘\ell<0.69kroman_ℓ < 0.69 italic_k one can abandon most of them and get an exponential improvement using a bare minimum of ingredients from[CGMS23].) We do, however, change the way we package and optimize applications of these ideas, replacing the CGMS book algorithm by a fairly simple induction, perhaps closer paralleling the original Erdős-Szekeres approach. In particular, we don’t explicitly bound allowed changes in density of red edges, eliminating the technicality mentioned above.

Using these modifications we obtain the following improved bounds.

In Section2 we give a short proof of the following explicit bound onRamsey numbers

R(k,)4(k+)((5+1)(k+2)4)(k+2k)k/2𝑅𝑘4𝑘superscript51𝑘24superscript𝑘2𝑘𝑘2R(k,\ell)\leq 4(k+\ell)\left(\frac{\left(\sqrt{5}+1\right)(k+2\ell)}{4\ell}%\right)^{\ell}\left(\frac{k+2\ell}{k}\right)^{k/2}italic_R ( italic_k , roman_ℓ ) ≤ 4 ( italic_k + roman_ℓ ) ( divide start_ARG ( square-root start_ARG 5 end_ARG + 1 ) ( italic_k + 2 roman_ℓ ) end_ARG start_ARG 4 roman_ℓ end_ARG ) start_POSTSUPERSCRIPT roman_ℓ end_POSTSUPERSCRIPT ( divide start_ARG italic_k + 2 roman_ℓ end_ARG start_ARG italic_k end_ARG ) start_POSTSUPERSCRIPT italic_k / 2 end_POSTSUPERSCRIPT(3)

for all positive integers k𝑘\ell\leq kroman_ℓ ≤ italic_k. (See 6.)The main idea of the proof is to inductively maintain a lower bound on the excess number of red edges between the two sets of vertices X𝑋Xitalic_X and Y𝑌Yitalic_Y under consideration, as compared to some fixed density p𝑝pitalic_p , i.e. a bound on eR(X,Y)p|X||Y|subscript𝑒𝑅𝑋𝑌𝑝𝑋𝑌e_{R}(X,Y)-p|X||Y|italic_e start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ( italic_X , italic_Y ) - italic_p | italic_X | | italic_Y | where eR(X,Y)subscript𝑒𝑅𝑋𝑌e_{R}(X,Y)italic_e start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ( italic_X , italic_Y ) denotes the number of red edges with one end in X𝑋Xitalic_X and another in Y𝑌Yitalic_Y.

It is not hard to verify that (3) gives an exponential improvement of the Erdős-Szekeres bound for large enough \ellroman_ℓ and k𝑘kitalic_k, as long as 0.69k0.69𝑘\ell\leq 0.69kroman_ℓ ≤ 0.69 italic_k. It is meaningful even in the =o(k)𝑜𝑘\ell=o(k)roman_ℓ = italic_o ( italic_k ) regime, while[CGMS23] focuses on the regime =Θ(k)Θ𝑘\ell=\Theta(k)roman_ℓ = roman_Θ ( italic_k ). Moreover, the results of Section2 straightforwardly extend to the multicolor Ramsey numbers, as shown in Section5, while extending the whole book algorithm seems to require overcoming non-trivial technical obstacles.

In Section3 we present our interpretation of the full power of the CGMS book algorithm, optimizing some of the parameters involved. We replace the quantity maintained inductively by a more involved one, which essentially corresponds to a higher moment of the above mentioned excess number of edges. In Section4 we optimize the initial value of density of red edges at which we can start our induction and prove our main result, the following.

Theorem 1.

For all positive integers k𝑘\ell\leq kroman_ℓ ≤ italic_k

R(k,)eG(/k)k+o(k)(k+),𝑅𝑘superscript𝑒𝐺𝑘𝑘𝑜𝑘binomial𝑘R(k,\ell)\leq e^{G(\ell/k)k+o(k)}\binom{k+\ell}{\ell},italic_R ( italic_k , roman_ℓ ) ≤ italic_e start_POSTSUPERSCRIPT italic_G ( roman_ℓ / italic_k ) italic_k + italic_o ( italic_k ) end_POSTSUPERSCRIPT ( FRACOP start_ARG italic_k + roman_ℓ end_ARG start_ARG roman_ℓ end_ARG ) ,

where G(λ)=(0.25λ+0.03λ2+0.08λ3)eλ.𝐺𝜆0.25𝜆0.03superscript𝜆20.08superscript𝜆3superscript𝑒𝜆G(\lambda)=\left(-0.25\lambda+0.03\lambda^{2}+0.08\lambda^{3}\right)e^{-%\lambda}.italic_G ( italic_λ ) = ( - 0.25 italic_λ + 0.03 italic_λ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 0.08 italic_λ start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ) italic_e start_POSTSUPERSCRIPT - italic_λ end_POSTSUPERSCRIPT .

In particular, 1 implies that

R(k,k)e0.14e1k+o(k)(2kk)=(4e0.14e1)k+o(k)=(3.7992)k+o(k),𝑅𝑘𝑘superscript𝑒0.14superscript𝑒1𝑘𝑜𝑘binomial2𝑘𝑘superscript4superscript𝑒0.14superscript𝑒1𝑘𝑜𝑘superscript3.7992𝑘𝑜𝑘R(k,k)\leq e^{-0.14e^{-1}k+o(k)}\binom{2k}{k}=(4e^{-0.14e^{-1}})^{k+o(k)}=(3.7%992\ldots)^{k+o(k)},italic_R ( italic_k , italic_k ) ≤ italic_e start_POSTSUPERSCRIPT - 0.14 italic_e start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_k + italic_o ( italic_k ) end_POSTSUPERSCRIPT ( FRACOP start_ARG 2 italic_k end_ARG start_ARG italic_k end_ARG ) = ( 4 italic_e start_POSTSUPERSCRIPT - 0.14 italic_e start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT italic_k + italic_o ( italic_k ) end_POSTSUPERSCRIPT = ( 3.7992 … ) start_POSTSUPERSCRIPT italic_k + italic_o ( italic_k ) end_POSTSUPERSCRIPT ,

and, more generally, that

R(k,)e0.14e1+o(k)(k+)e/20+o(k)(k+),𝑅𝑘superscript𝑒0.14superscript𝑒1𝑜𝑘binomial𝑘superscript𝑒20𝑜𝑘binomial𝑘R(k,\ell)\leq e^{-0.14e^{-1}\ell+o(k)}\binom{k+\ell}{\ell}\leq e^{-\ell/20+o(k%)}\binom{k+\ell}{\ell},italic_R ( italic_k , roman_ℓ ) ≤ italic_e start_POSTSUPERSCRIPT - 0.14 italic_e start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT roman_ℓ + italic_o ( italic_k ) end_POSTSUPERSCRIPT ( FRACOP start_ARG italic_k + roman_ℓ end_ARG start_ARG roman_ℓ end_ARG ) ≤ italic_e start_POSTSUPERSCRIPT - roman_ℓ / 20 + italic_o ( italic_k ) end_POSTSUPERSCRIPT ( FRACOP start_ARG italic_k + roman_ℓ end_ARG start_ARG roman_ℓ end_ARG ) ,

significantly improving (1) and (2).

1.1. Notation

As mentioned earlier we denote by eR(X,Y)subscript𝑒𝑅𝑋𝑌e_{R}(X,Y)italic_e start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ( italic_X , italic_Y ) the number of red edges with one end in a set X𝑋Xitalic_X and another in Y𝑌Yitalic_Y. Given a color C𝐶Citalic_C and a vertex v𝑣vitalic_v of our graph, we denote by NC(v)subscript𝑁𝐶𝑣N_{C}(v)italic_N start_POSTSUBSCRIPT italic_C end_POSTSUBSCRIPT ( italic_v ) the set of vertices u𝑢uitalic_u such that the edge uv𝑢𝑣uvitalic_u italic_v is colored in color C𝐶Citalic_C. (Throughout the bulk of the paper we work with two colors: red denoted by R𝑅Ritalic_R, and blue denoted by B𝐵Bitalic_B, but in Section5 we introduce additional colors.)

2. Easy bound far from the diagonal

In this section we present a very short inductive argument yielding an exponential improvement to the Erdős-Szekeres upper bound on R(k,)𝑅𝑘R(k,\ell)italic_R ( italic_k , roman_ℓ ) for <0.69k.0.69𝑘\ell<0.69k.roman_ℓ < 0.69 italic_k .

The main object of our investigation is the same as in[CGMS23]: a pair of disjoint sets of vertices, the density of red edges between which is the critical parameter controlled during the inductive argument. We formalize the setting in the following definitions.

Let X,Y𝑋𝑌X,Yitalic_X , italic_Y be two non-empty disjoint subsets of vertices of a complete graph with edges colored red and blue. We say that (X,Y)𝑋𝑌(X,Y)( italic_X , italic_Y ) is a candidate. We say that a candidate (X,Y)𝑋𝑌(X,Y)( italic_X , italic_Y ) is (k,,t)𝑘𝑡(k,\ell,t)( italic_k , roman_ℓ , italic_t )-good if XY𝑋𝑌X\cup Yitalic_X ∪ italic_Y contains a red Kksubscript𝐾𝑘K_{k}italic_K start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT or X𝑋Xitalic_X contains a blue Ktsubscript𝐾𝑡K_{t}italic_K start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT or Y𝑌Yitalic_Y contains a blue Ksubscript𝐾K_{\ell}italic_K start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT. The density of (X,Y)𝑋𝑌(X,Y)( italic_X , italic_Y ) is d(X,Y)=eR(X,Y)|X|||Y|d(X,Y)=\frac{e_{R}(X,Y)}{|X|||Y|}italic_d ( italic_X , italic_Y ) = divide start_ARG italic_e start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ( italic_X , italic_Y ) end_ARG start_ARG | italic_X | | | italic_Y | end_ARG.Let fp(X,Y)=eR(X,Y)p|X||Y|subscript𝑓𝑝𝑋𝑌subscript𝑒𝑅𝑋𝑌𝑝𝑋𝑌f_{p}(X,Y)=e_{R}(X,Y)-p|X||Y|italic_f start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( italic_X , italic_Y ) = italic_e start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ( italic_X , italic_Y ) - italic_p | italic_X | | italic_Y | denote the excess amount of red edges between X𝑋Xitalic_X and Y𝑌Yitalic_Y when compared to density p𝑝pitalic_p.The following lemma shows that replacing Y𝑌Yitalic_Y by NR(v)Ysubscript𝑁𝑅𝑣𝑌N_{R}(v)\cap Yitalic_N start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ( italic_v ) ∩ italic_Y for vX𝑣𝑋v\in Xitalic_v ∈ italic_X on average reduces fpsubscript𝑓𝑝f_{p}italic_f start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT by a factor at most p𝑝pitalic_p. It is essentially a restatement [CGMS23, Observation 5.5].

Lemma 2.

Let (X,Y)𝑋𝑌(X,Y)( italic_X , italic_Y ) be a candidate. Then

vXfp(X,NR(v)Y)p|X|fp(X,Y).subscript𝑣𝑋subscript𝑓𝑝𝑋subscript𝑁𝑅𝑣𝑌𝑝𝑋subscript𝑓𝑝𝑋𝑌\sum_{v\in X}f_{p}(X,N_{R}(v)\cap Y)\geq p|X|f_{p}(X,Y).∑ start_POSTSUBSCRIPT italic_v ∈ italic_X end_POSTSUBSCRIPT italic_f start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( italic_X , italic_N start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ( italic_v ) ∩ italic_Y ) ≥ italic_p | italic_X | italic_f start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( italic_X , italic_Y ) .(4)
Proof.

We have

vXsubscript𝑣𝑋\displaystyle\sum_{v\in X}∑ start_POSTSUBSCRIPT italic_v ∈ italic_X end_POSTSUBSCRIPTfp(X,NR(v)Y)p|X|fp(X,Y)subscript𝑓𝑝𝑋subscript𝑁𝑅𝑣𝑌𝑝𝑋subscript𝑓𝑝𝑋𝑌\displaystyle f_{p}(X,N_{R}(v)\cap Y)-p|X|f_{p}(X,Y)italic_f start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( italic_X , italic_N start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ( italic_v ) ∩ italic_Y ) - italic_p | italic_X | italic_f start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( italic_X , italic_Y )
=vX(yNR(v)Y|NR(y)X|p|X|)p|X|eR(X,Y)+p2|X|2|Y|absentsubscript𝑣𝑋subscript𝑦subscript𝑁𝑅𝑣𝑌subscript𝑁𝑅𝑦𝑋𝑝𝑋𝑝𝑋subscript𝑒𝑅𝑋𝑌superscript𝑝2superscript𝑋2𝑌\displaystyle=\sum_{v\in X}\left(\sum_{y\in N_{R}(v)\cap Y}|N_{R}(y)\cap X|-p|%X|\right)-p|X|e_{R}(X,Y)+p^{2}|X|^{2}|Y|= ∑ start_POSTSUBSCRIPT italic_v ∈ italic_X end_POSTSUBSCRIPT ( ∑ start_POSTSUBSCRIPT italic_y ∈ italic_N start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ( italic_v ) ∩ italic_Y end_POSTSUBSCRIPT | italic_N start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ( italic_y ) ∩ italic_X | - italic_p | italic_X | ) - italic_p | italic_X | italic_e start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ( italic_X , italic_Y ) + italic_p start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT | italic_X | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT | italic_Y |
=yY((vNR(y)X|NR(y)X|p|X|)p|X||NR(y)X|+p2|X|)absentsubscript𝑦𝑌subscript𝑣subscript𝑁𝑅𝑦𝑋subscript𝑁𝑅𝑦𝑋𝑝𝑋𝑝𝑋subscript𝑁𝑅𝑦𝑋superscript𝑝2𝑋\displaystyle=\sum_{y\in Y}\left(\left(\sum_{v\in N_{R}(y)\cap X}|N_{R}(y)\capX%|-p|X|\right)-p|X||N_{R}(y)\cap X|+p^{2}|X|\right)= ∑ start_POSTSUBSCRIPT italic_y ∈ italic_Y end_POSTSUBSCRIPT ( ( ∑ start_POSTSUBSCRIPT italic_v ∈ italic_N start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ( italic_y ) ∩ italic_X end_POSTSUBSCRIPT | italic_N start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ( italic_y ) ∩ italic_X | - italic_p | italic_X | ) - italic_p | italic_X | | italic_N start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ( italic_y ) ∩ italic_X | + italic_p start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT | italic_X | )
=yY(|NR(y)X|p|X|)20.absentsubscript𝑦𝑌superscriptsubscript𝑁𝑅𝑦𝑋𝑝𝑋20\displaystyle=\sum_{y\in Y}\left(|N_{R}(y)\cap X|-p|X|\right)^{2}\geq 0.= ∑ start_POSTSUBSCRIPT italic_y ∈ italic_Y end_POSTSUBSCRIPT ( | italic_N start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ( italic_y ) ∩ italic_X | - italic_p | italic_X | ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ≥ 0 .

Next we need the following form of the Erdős-Szekeres upper bound on Ramsey numbers.

Observation 3.

For all 0<x<10𝑥10<x<10 < italic_x < 1 and all positive integers k𝑘kitalic_k and \ellroman_ℓ

R(k,)xk+1(1x)+1.𝑅𝑘superscript𝑥𝑘1superscript1𝑥1R(k,\ell)\leq x^{-k+1}(1-x)^{-\ell+1}.italic_R ( italic_k , roman_ℓ ) ≤ italic_x start_POSTSUPERSCRIPT - italic_k + 1 end_POSTSUPERSCRIPT ( 1 - italic_x ) start_POSTSUPERSCRIPT - roman_ℓ + 1 end_POSTSUPERSCRIPT .
Proof.

By induction on k+𝑘k+\ellitalic_k + roman_ℓ. If k=1𝑘1k=1italic_k = 1 or =11\ell=1roman_ℓ = 1 the statement clearly holds, and the induction step follows ,asR(k,)R(k,1)+R(k1,).𝑅𝑘𝑅𝑘1𝑅𝑘1R(k,\ell)\leq R(k,\ell-1)+R(k-1,\ell).italic_R ( italic_k , roman_ℓ ) ≤ italic_R ( italic_k , roman_ℓ - 1 ) + italic_R ( italic_k - 1 , roman_ℓ ) .

The following lemma contains the main inductive argument we use to replace the book algorithm.

Lemma 4.

Let 0<x<p<10𝑥𝑝10<x<p<10 < italic_x < italic_p < 1, let k,𝑘k,\ellitalic_k , roman_ℓ and t𝑡titalic_t be positive integers and let (X,Y)𝑋𝑌(X,Y)( italic_X , italic_Y ) be a candidate such that

fp(X,Y)(k+t)xk+1(1x)+1(px)t+1subscript𝑓𝑝𝑋𝑌𝑘𝑡superscript𝑥𝑘1superscript1𝑥1superscript𝑝𝑥𝑡1f_{p}(X,Y)\geq(k+t)x^{-k+1}(1-x)^{-\ell+1}(p-x)^{-t+1}italic_f start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( italic_X , italic_Y ) ≥ ( italic_k + italic_t ) italic_x start_POSTSUPERSCRIPT - italic_k + 1 end_POSTSUPERSCRIPT ( 1 - italic_x ) start_POSTSUPERSCRIPT - roman_ℓ + 1 end_POSTSUPERSCRIPT ( italic_p - italic_x ) start_POSTSUPERSCRIPT - italic_t + 1 end_POSTSUPERSCRIPT(5)

then (X,Y)𝑋𝑌(X,Y)( italic_X , italic_Y ) is (k,,t)𝑘𝑡(k,\ell,t)( italic_k , roman_ℓ , italic_t )-good.

Proof.

The proof is by induction on k+t𝑘𝑡k+titalic_k + italic_t. If k=1𝑘1k=1italic_k = 1 or t=1𝑡1t=1italic_t = 1 then every candidate is (k,,t)𝑘𝑡(k,\ell,t)( italic_k , roman_ℓ , italic_t )-good. This implies the base case of induction and allows us to assume k,t2𝑘𝑡2k,t\geq 2italic_k , italic_t ≥ 2 in the induction step.

By 2 there exists vX𝑣𝑋v\in Xitalic_v ∈ italic_X such that fp(X,NR(v)Y)pfp(X,Y)subscript𝑓𝑝𝑋subscript𝑁𝑅𝑣𝑌𝑝subscript𝑓𝑝𝑋𝑌f_{p}(X,N_{R}(v)\cap Y)\geq p\cdot f_{p}(X,Y)italic_f start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( italic_X , italic_N start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ( italic_v ) ∩ italic_Y ) ≥ italic_p ⋅ italic_f start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( italic_X , italic_Y ). Let Y=NR(v)Y,XB=NB(v)X,XR=NR(v)Xformulae-sequencesuperscript𝑌subscript𝑁𝑅𝑣𝑌formulae-sequencesubscript𝑋𝐵subscript𝑁𝐵𝑣𝑋subscript𝑋𝑅subscript𝑁𝑅𝑣𝑋Y^{\prime}=N_{R}(v)\cap Y,X_{B}=N_{B}(v)\cap X,X_{R}=N_{R}(v)\cap Xitalic_Y start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT = italic_N start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ( italic_v ) ∩ italic_Y , italic_X start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT = italic_N start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT ( italic_v ) ∩ italic_X , italic_X start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT = italic_N start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ( italic_v ) ∩ italic_X.If

fp(XR,Y)k+t1k+txfp(X,Y)(k+t1)x(k1)+1(1x)+1(px)t+1subscript𝑓𝑝subscript𝑋𝑅superscript𝑌𝑘𝑡1𝑘𝑡𝑥subscript𝑓𝑝𝑋𝑌𝑘𝑡1superscript𝑥𝑘11superscript1𝑥1superscript𝑝𝑥𝑡1f_{p}(X_{R},Y^{\prime})\geq\frac{k+t-1}{k+t}xf_{p}(X,Y)\geq(k+t-1)x^{-(k-1)+1}%(1-x)^{-\ell+1}(p-x)^{-t+1}italic_f start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( italic_X start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT , italic_Y start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ≥ divide start_ARG italic_k + italic_t - 1 end_ARG start_ARG italic_k + italic_t end_ARG italic_x italic_f start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( italic_X , italic_Y ) ≥ ( italic_k + italic_t - 1 ) italic_x start_POSTSUPERSCRIPT - ( italic_k - 1 ) + 1 end_POSTSUPERSCRIPT ( 1 - italic_x ) start_POSTSUPERSCRIPT - roman_ℓ + 1 end_POSTSUPERSCRIPT ( italic_p - italic_x ) start_POSTSUPERSCRIPT - italic_t + 1 end_POSTSUPERSCRIPT

then by the induction hypothesis (XR,Y)subscript𝑋𝑅superscript𝑌(X_{R},Y^{\prime})( italic_X start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT , italic_Y start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) is (k1,,t)𝑘1𝑡(k-1,\ell,t)( italic_k - 1 , roman_ℓ , italic_t )-good, i.e. XRYsubscript𝑋𝑅superscript𝑌X_{R}\cup Y^{\prime}italic_X start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ∪ italic_Y start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT contains a red Kk1subscript𝐾𝑘1K_{k-1}italic_K start_POSTSUBSCRIPT italic_k - 1 end_POSTSUBSCRIPT or XRsubscript𝑋𝑅X_{R}italic_X start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT contains a blue Ktsubscript𝐾𝑡K_{t}italic_K start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT or Ysuperscript𝑌Y^{\prime}italic_Y start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT contains a blue Ksubscript𝐾K_{\ell}italic_K start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT. In the first case, XRY{v}XYsubscript𝑋𝑅superscript𝑌𝑣𝑋𝑌X_{R}\cup Y^{\prime}\cup\{v\}\subseteq X\cup Yitalic_X start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ∪ italic_Y start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ∪ { italic_v } ⊆ italic_X ∪ italic_Y contains a red Kksubscript𝐾𝑘K_{k}italic_K start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT, as XRYNR(v).subscript𝑋𝑅superscript𝑌subscript𝑁𝑅𝑣X_{R}\cup Y^{\prime}\subseteq N_{R}(v).italic_X start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ∪ italic_Y start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ⊆ italic_N start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ( italic_v ) . It follows that in each case (X,Y)𝑋𝑌(X,Y)( italic_X , italic_Y ) is (k,,t)𝑘𝑡(k,\ell,t)( italic_k , roman_ℓ , italic_t )-good, as desired, and so we may assume that fp(XR,Y)<k+t1k+txfp(X,Y)subscript𝑓𝑝subscript𝑋𝑅superscript𝑌𝑘𝑡1𝑘𝑡𝑥subscript𝑓𝑝𝑋𝑌f_{p}(X_{R},Y^{\prime})<\frac{k+t-1}{k+t}xf_{p}(X,Y)italic_f start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( italic_X start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT , italic_Y start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) < divide start_ARG italic_k + italic_t - 1 end_ARG start_ARG italic_k + italic_t end_ARG italic_x italic_f start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( italic_X , italic_Y ).

Symmetrically, we may assume that fp(XB,Y)<k+t1k+t(px)fp(X,Y)subscript𝑓𝑝subscript𝑋𝐵superscript𝑌𝑘𝑡1𝑘𝑡𝑝𝑥subscript𝑓𝑝𝑋𝑌f_{p}(X_{B},Y^{\prime})<\frac{k+t-1}{k+t}(p-x)f_{p}(X,Y)italic_f start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( italic_X start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT , italic_Y start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) < divide start_ARG italic_k + italic_t - 1 end_ARG start_ARG italic_k + italic_t end_ARG ( italic_p - italic_x ) italic_f start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( italic_X , italic_Y ).It follows that

pfp(X,Y)𝑝subscript𝑓𝑝𝑋𝑌\displaystyle pf_{p}(X,Y)italic_p italic_f start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( italic_X , italic_Y )fp(X,Y)=fp(XR,Y)+fp(XB,Y)+fp({x},Y)absentsubscript𝑓𝑝𝑋superscript𝑌subscript𝑓𝑝subscript𝑋𝑅superscript𝑌subscript𝑓𝑝subscript𝑋𝐵superscript𝑌subscript𝑓𝑝𝑥superscript𝑌\displaystyle\leq f_{p}(X,Y^{\prime})=f_{p}(X_{R},Y^{\prime})+f_{p}(X_{B},Y^{%\prime})+f_{p}(\{x\},Y^{\prime})≤ italic_f start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( italic_X , italic_Y start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) = italic_f start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( italic_X start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT , italic_Y start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) + italic_f start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( italic_X start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT , italic_Y start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) + italic_f start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( { italic_x } , italic_Y start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT )
<k+t1k+tpfp(X,Y)+|Y|,absent𝑘𝑡1𝑘𝑡𝑝subscript𝑓𝑝𝑋𝑌𝑌\displaystyle<\frac{k+t-1}{k+t}pf_{p}(X,Y)+|Y|,< divide start_ARG italic_k + italic_t - 1 end_ARG start_ARG italic_k + italic_t end_ARG italic_p italic_f start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( italic_X , italic_Y ) + | italic_Y | ,

and so 1k+tfp(X,Y)|Y|1𝑘𝑡subscript𝑓𝑝𝑋𝑌𝑌\frac{1}{{k+t}}f_{p}(X,Y)\leq|Y|divide start_ARG 1 end_ARG start_ARG italic_k + italic_t end_ARG italic_f start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( italic_X , italic_Y ) ≤ | italic_Y |.Thus,

|Y|xk+1(1x)+1(px)t+1xk+1(1x)+1R(k,),𝑌superscript𝑥𝑘1superscript1𝑥1superscript𝑝𝑥𝑡1superscript𝑥𝑘1superscript1𝑥1𝑅𝑘|Y|\geq x^{-k+1}(1-x)^{-\ell+1}(p-x)^{-t+1}\geq x^{-k+1}(1-x)^{-\ell+1}\geq R(%k,\ell),| italic_Y | ≥ italic_x start_POSTSUPERSCRIPT - italic_k + 1 end_POSTSUPERSCRIPT ( 1 - italic_x ) start_POSTSUPERSCRIPT - roman_ℓ + 1 end_POSTSUPERSCRIPT ( italic_p - italic_x ) start_POSTSUPERSCRIPT - italic_t + 1 end_POSTSUPERSCRIPT ≥ italic_x start_POSTSUPERSCRIPT - italic_k + 1 end_POSTSUPERSCRIPT ( 1 - italic_x ) start_POSTSUPERSCRIPT - roman_ℓ + 1 end_POSTSUPERSCRIPT ≥ italic_R ( italic_k , roman_ℓ ) ,

where the last inequality uses 3, implying that (X,Y)𝑋𝑌(X,Y)( italic_X , italic_Y ) is (k,,t)𝑘𝑡(k,\ell,t)( italic_k , roman_ℓ , italic_t )-good.∎

Finally, we derive from4 the promised bound on the Ramsey numbers by induction on \ellroman_ℓ, applying4, if the density of red edges is sufficiently high, and, otherwise, applying the induction hypothesis to the blue neighborhood of an arbitrary vertex.

Theorem 5.

For all 515+1<p<15151𝑝1\frac{\sqrt{5}-1}{\sqrt{5}+1}<p<1divide start_ARG square-root start_ARG 5 end_ARG - 1 end_ARG start_ARG square-root start_ARG 5 end_ARG + 1 end_ARG < italic_p < 1 and all positive integers k𝑘kitalic_k and \ellroman_ℓ

R(k,)4(k+)(1+52p+152)k/2(1p).𝑅𝑘4𝑘superscript152𝑝152𝑘2superscript1𝑝R(k,\ell)\leq 4(k+\ell)\left(\frac{1+\sqrt{5}}{2}p+\frac{1-\sqrt{5}}{2}\right)%^{-k/2}(1-p)^{-\ell}.italic_R ( italic_k , roman_ℓ ) ≤ 4 ( italic_k + roman_ℓ ) ( divide start_ARG 1 + square-root start_ARG 5 end_ARG end_ARG start_ARG 2 end_ARG italic_p + divide start_ARG 1 - square-root start_ARG 5 end_ARG end_ARG start_ARG 2 end_ARG ) start_POSTSUPERSCRIPT - italic_k / 2 end_POSTSUPERSCRIPT ( 1 - italic_p ) start_POSTSUPERSCRIPT - roman_ℓ end_POSTSUPERSCRIPT .
Proof.

By induction on \ellroman_ℓ. Note that the theorem trivially holds if k=1𝑘1k=1italic_k = 1 or =11\ell=1roman_ℓ = 1. In particular, the base case =11\ell=1roman_ℓ = 1 trivially holds and we assume k,l2𝑘𝑙2k,l\geq 2italic_k , italic_l ≥ 2 in the induction step.

Let x=1+52p+152>0𝑥152𝑝1520x=\frac{1+\sqrt{5}}{2}p+\frac{1-\sqrt{5}}{2}>0italic_x = divide start_ARG 1 + square-root start_ARG 5 end_ARG end_ARG start_ARG 2 end_ARG italic_p + divide start_ARG 1 - square-root start_ARG 5 end_ARG end_ARG start_ARG 2 end_ARG > 0 and note that

(1p)2=(1x)(px).superscript1𝑝21𝑥𝑝𝑥(1-p)^{2}=(1-x)(p-x).( 1 - italic_p ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = ( 1 - italic_x ) ( italic_p - italic_x ) .(6)

Consider a red-blue coloring of edges of a complete graph on n4(k+)xk/2(1p)𝑛4𝑘superscript𝑥𝑘2superscript1𝑝n\geq 4(k+\ell)x^{-k/2}(1-p)^{-\ell}italic_n ≥ 4 ( italic_k + roman_ℓ ) italic_x start_POSTSUPERSCRIPT - italic_k / 2 end_POSTSUPERSCRIPT ( 1 - italic_p ) start_POSTSUPERSCRIPT - roman_ℓ end_POSTSUPERSCRIPT vertices.In particular, as xp𝑥𝑝x\leq pitalic_x ≤ italic_p, we have

n4(k+)x1(1p)14(k+)p(1p)𝑛4𝑘superscript𝑥1superscript1𝑝14𝑘𝑝1𝑝n\geq 4(k+\ell)x^{-1}(1-p)^{-1}\geq\frac{4(k+\ell)}{p(1-p)}italic_n ≥ 4 ( italic_k + roman_ℓ ) italic_x start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( 1 - italic_p ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ≥ divide start_ARG 4 ( italic_k + roman_ℓ ) end_ARG start_ARG italic_p ( 1 - italic_p ) end_ARG(7)

If |NB(v)|k+1k+(1p)n4(k+1)xk/2(1p)+1subscript𝑁𝐵𝑣𝑘1𝑘1𝑝𝑛4𝑘1superscript𝑥𝑘2superscript1𝑝1|N_{B}(v)|\geq\frac{k+\ell-1}{k+\ell}(1-p)n\geq 4(k+\ell-1)x^{-k/2}(1-p)^{-%\ell+1}| italic_N start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT ( italic_v ) | ≥ divide start_ARG italic_k + roman_ℓ - 1 end_ARG start_ARG italic_k + roman_ℓ end_ARG ( 1 - italic_p ) italic_n ≥ 4 ( italic_k + roman_ℓ - 1 ) italic_x start_POSTSUPERSCRIPT - italic_k / 2 end_POSTSUPERSCRIPT ( 1 - italic_p ) start_POSTSUPERSCRIPT - roman_ℓ + 1 end_POSTSUPERSCRIPT for some vertex v𝑣vitalic_v then the coloring of NB(v)subscript𝑁𝐵𝑣N_{B}(v)italic_N start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT ( italic_v ) contains a red Kksubscript𝐾𝑘K_{k}italic_K start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT or a blue K1subscript𝐾1K_{\ell-1}italic_K start_POSTSUBSCRIPT roman_ℓ - 1 end_POSTSUBSCRIPT by the induction hypothesis, and so our coloring contains a red Kksubscript𝐾𝑘K_{k}italic_K start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT or a blue Ksubscript𝐾K_{\ell}italic_K start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT.

Thus we may assume that |NB(v)|<k+1k+(1p)nsubscript𝑁𝐵𝑣𝑘1𝑘1𝑝𝑛|N_{B}(v)|<\frac{k+\ell-1}{k+\ell}(1-p)n| italic_N start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT ( italic_v ) | < divide start_ARG italic_k + roman_ℓ - 1 end_ARG start_ARG italic_k + roman_ℓ end_ARG ( 1 - italic_p ) italic_n for every v𝑣vitalic_v, i.e.

|NR(v)|>n1k+1k+(1p)n=(p+(1p)k+)n1.subscript𝑁𝑅𝑣𝑛1𝑘1𝑘1𝑝𝑛𝑝1𝑝𝑘𝑛1|N_{R}(v)|>n-1-\frac{k+\ell-1}{k+\ell}(1-p)n=\left(p+\frac{(1-p)}{k+\ell}%\right)n-1.| italic_N start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ( italic_v ) | > italic_n - 1 - divide start_ARG italic_k + roman_ℓ - 1 end_ARG start_ARG italic_k + roman_ℓ end_ARG ( 1 - italic_p ) italic_n = ( italic_p + divide start_ARG ( 1 - italic_p ) end_ARG start_ARG italic_k + roman_ℓ end_ARG ) italic_n - 1 .

Let (X,Y)𝑋𝑌(X,Y)( italic_X , italic_Y ) be a uniformly random partition of the vertices of our graph. Then

𝔼[eR(X,Y)]=14v|NR(v)|>(p+(1p)k+)n24n4𝔼delimited-[]subscript𝑒𝑅𝑋𝑌14subscript𝑣subscript𝑁𝑅𝑣𝑝1𝑝𝑘superscript𝑛24𝑛4\mathbb{E}[e_{R}(X,Y)]=\frac{1}{4}\sum_{v}|N_{R}(v)|>\left(p+\frac{(1-p)}{k+%\ell}\right)\frac{n^{2}}{4}-\frac{n}{4}blackboard_E [ italic_e start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ( italic_X , italic_Y ) ] = divide start_ARG 1 end_ARG start_ARG 4 end_ARG ∑ start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT | italic_N start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ( italic_v ) | > ( italic_p + divide start_ARG ( 1 - italic_p ) end_ARG start_ARG italic_k + roman_ℓ end_ARG ) divide start_ARG italic_n start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 4 end_ARG - divide start_ARG italic_n end_ARG start_ARG 4 end_ARG

It follows that

𝔼[fp(X,Y)]𝔼delimited-[]subscript𝑓𝑝𝑋𝑌\displaystyle\mathbb{E}[f_{p}(X,Y)]blackboard_E [ italic_f start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( italic_X , italic_Y ) ]𝔼[eR(X,Y)]pn24(1p)k+n24n4absent𝔼delimited-[]subscript𝑒𝑅𝑋𝑌𝑝superscript𝑛241𝑝𝑘superscript𝑛24𝑛4\displaystyle\geq\mathbb{E}[e_{R}(X,Y)]-\frac{pn^{2}}{4}\geq\frac{(1-p)}{k+%\ell}\frac{n^{2}}{4}-\frac{n}{4}≥ blackboard_E [ italic_e start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ( italic_X , italic_Y ) ] - divide start_ARG italic_p italic_n start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 4 end_ARG ≥ divide start_ARG ( 1 - italic_p ) end_ARG start_ARG italic_k + roman_ℓ end_ARG divide start_ARG italic_n start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 4 end_ARG - divide start_ARG italic_n end_ARG start_ARG 4 end_ARG
(1p)2k+n24(k+)xk(1p)2+2absentsuperscript1𝑝2𝑘superscript𝑛24𝑘superscript𝑥𝑘superscript1𝑝22\displaystyle\geq\frac{(1-p)^{2}}{k+\ell}\frac{n^{2}}{4}\geq(k+\ell)x^{-k}(1-p%)^{-2\ell+2}≥ divide start_ARG ( 1 - italic_p ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_k + roman_ℓ end_ARG divide start_ARG italic_n start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 4 end_ARG ≥ ( italic_k + roman_ℓ ) italic_x start_POSTSUPERSCRIPT - italic_k end_POSTSUPERSCRIPT ( 1 - italic_p ) start_POSTSUPERSCRIPT - 2 roman_ℓ + 2 end_POSTSUPERSCRIPT
=(k+)xk(1x)+1(px)+1,absent𝑘superscript𝑥𝑘superscript1𝑥1superscript𝑝𝑥1\displaystyle=(k+\ell)x^{-k}(1-x)^{-\ell+1}(p-x)^{-\ell+1},= ( italic_k + roman_ℓ ) italic_x start_POSTSUPERSCRIPT - italic_k end_POSTSUPERSCRIPT ( 1 - italic_x ) start_POSTSUPERSCRIPT - roman_ℓ + 1 end_POSTSUPERSCRIPT ( italic_p - italic_x ) start_POSTSUPERSCRIPT - roman_ℓ + 1 end_POSTSUPERSCRIPT ,

where the second inequality holds by (7), and the last equality uses (6). Thus (X,Y)𝑋𝑌(X,Y)( italic_X , italic_Y ) is (k,,)𝑘(k,\ell,\ell)( italic_k , roman_ℓ , roman_ℓ )-good by 4, implying that our coloring contains a red Kksubscript𝐾𝑘K_{k}italic_K start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT or a blue Ksubscript𝐾K_{\ell}italic_K start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT, as desired.∎

Substituting

p=(5+1)k+(252)(5+1)(k+2)𝑝51𝑘25251𝑘2p=\frac{(\sqrt{5}+1)k+(2\sqrt{5}-2)\ell}{\left(\sqrt{5}+1\right)(k+2\ell)}italic_p = divide start_ARG ( square-root start_ARG 5 end_ARG + 1 ) italic_k + ( 2 square-root start_ARG 5 end_ARG - 2 ) roman_ℓ end_ARG start_ARG ( square-root start_ARG 5 end_ARG + 1 ) ( italic_k + 2 roman_ℓ ) end_ARG

in 5 yields the following corollary, mentioned in the introduction.

Corollary 6.

For all positive integers k𝑘k\geq\ellitalic_k ≥ roman_ℓ

R(k,)4(k+)((5+1)(k+2)4)(k+2k)k/2𝑅𝑘4𝑘superscript51𝑘24superscript𝑘2𝑘𝑘2R(k,\ell)\leq 4(k+\ell)\left(\frac{\left(\sqrt{5}+1\right)(k+2\ell)}{4\ell}%\right)^{\ell}\left(\frac{k+2\ell}{k}\right)^{k/2}italic_R ( italic_k , roman_ℓ ) ≤ 4 ( italic_k + roman_ℓ ) ( divide start_ARG ( square-root start_ARG 5 end_ARG + 1 ) ( italic_k + 2 roman_ℓ ) end_ARG start_ARG 4 roman_ℓ end_ARG ) start_POSTSUPERSCRIPT roman_ℓ end_POSTSUPERSCRIPT ( divide start_ARG italic_k + 2 roman_ℓ end_ARG start_ARG italic_k end_ARG ) start_POSTSUPERSCRIPT italic_k / 2 end_POSTSUPERSCRIPT

Let ES(k,)=(k+2k1)𝐸𝑆𝑘binomial𝑘2𝑘1ES(k,\ell)=\binom{k+\ell-2}{k-1}italic_E italic_S ( italic_k , roman_ℓ ) = ( FRACOP start_ARG italic_k + roman_ℓ - 2 end_ARG start_ARG italic_k - 1 end_ARG ) denote the Erdős-Szekeres upper bound on the Ramsey numbers. Then ES(k,)=eO(logk)(k+k)k(k+),𝐸𝑆𝑘superscript𝑒𝑂𝑘superscript𝑘𝑘𝑘superscript𝑘ES(k,\ell)=e^{O(\log k)}\left(\frac{k+\ell}{k}\right)^{k}\left(\frac{k+\ell}{%\ell}\right)^{\ell},italic_E italic_S ( italic_k , roman_ℓ ) = italic_e start_POSTSUPERSCRIPT italic_O ( roman_log italic_k ) end_POSTSUPERSCRIPT ( divide start_ARG italic_k + roman_ℓ end_ARG start_ARG italic_k end_ARG ) start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT ( divide start_ARG italic_k + roman_ℓ end_ARG start_ARG roman_ℓ end_ARG ) start_POSTSUPERSCRIPT roman_ℓ end_POSTSUPERSCRIPT , and so 6 implies

R(k,)ES(k,)𝑅𝑘𝐸𝑆𝑘\displaystyle\frac{R(k,\ell)}{ES(k,\ell)}divide start_ARG italic_R ( italic_k , roman_ℓ ) end_ARG start_ARG italic_E italic_S ( italic_k , roman_ℓ ) end_ARGeO(logk)((5+1)(k+2)4(k+))((k+2)k(k+)2)k/2absentsuperscript𝑒𝑂𝑘superscript51𝑘24𝑘superscript𝑘2𝑘superscript𝑘2𝑘2\displaystyle\leq e^{O(\log k)}\left(\frac{(\sqrt{5}+1)(k+2\ell)}{4(k+\ell)}%\right)^{\ell}\left(\frac{(k+2\ell)k}{(k+\ell)^{2}}\right)^{k/2}≤ italic_e start_POSTSUPERSCRIPT italic_O ( roman_log italic_k ) end_POSTSUPERSCRIPT ( divide start_ARG ( square-root start_ARG 5 end_ARG + 1 ) ( italic_k + 2 roman_ℓ ) end_ARG start_ARG 4 ( italic_k + roman_ℓ ) end_ARG ) start_POSTSUPERSCRIPT roman_ℓ end_POSTSUPERSCRIPT ( divide start_ARG ( italic_k + 2 roman_ℓ ) italic_k end_ARG start_ARG ( italic_k + roman_ℓ ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ) start_POSTSUPERSCRIPT italic_k / 2 end_POSTSUPERSCRIPT

Thus 6 yields an exponential improvement of the Erdős-Szekeres bound whenever /k<0.6989,𝑘0.6989\ell/k<0.6989,roman_ℓ / italic_k < 0.6989 , and for =o(k)𝑜𝑘\ell=o(k)roman_ℓ = italic_o ( italic_k ) the improvement is of the order eO(logk)(5+14)<e0.21+O(logk)superscript𝑒𝑂𝑘superscript514superscript𝑒0.21𝑂𝑘e^{O(\log k)}\left(\frac{\sqrt{5}+1}{4}\right)^{\ell}<e^{-0.21\ell+O(\log k)}italic_e start_POSTSUPERSCRIPT italic_O ( roman_log italic_k ) end_POSTSUPERSCRIPT ( divide start_ARG square-root start_ARG 5 end_ARG + 1 end_ARG start_ARG 4 end_ARG ) start_POSTSUPERSCRIPT roman_ℓ end_POSTSUPERSCRIPT < italic_e start_POSTSUPERSCRIPT - 0.21 roman_ℓ + italic_O ( roman_log italic_k ) end_POSTSUPERSCRIPT.For comparison, the strongest bound for moderately small \ellroman_ℓ given in [CGMS23] is of the form

R(k,)e0.05kk++o(k)ES(k,)𝑅𝑘superscript𝑒0.05𝑘𝑘𝑜𝑘𝐸𝑆𝑘R(k,\ell)\leq e^{-0.05\frac{k}{k+\ell}\cdot\ell+o(k)}ES(k,\ell)italic_R ( italic_k , roman_ℓ ) ≤ italic_e start_POSTSUPERSCRIPT - 0.05 divide start_ARG italic_k end_ARG start_ARG italic_k + roman_ℓ end_ARG ⋅ roman_ℓ + italic_o ( italic_k ) end_POSTSUPERSCRIPT italic_E italic_S ( italic_k , roman_ℓ )

for k/9𝑘9\ell\leq k/9roman_ℓ ≤ italic_k / 9 (see [Theorem 9.1][CGMS23]).Meanwhile, in the same regime (k/9𝑘9\ell\leq k/9roman_ℓ ≤ italic_k / 9) 6 implies

R(k,)e0.16+O(logk)ES(k,).𝑅𝑘superscript𝑒0.16𝑂𝑘𝐸𝑆𝑘R(k,\ell)\leq e^{-0.16\ell+O(\log k)}ES(k,\ell).italic_R ( italic_k , roman_ℓ ) ≤ italic_e start_POSTSUPERSCRIPT - 0.16 roman_ℓ + italic_O ( roman_log italic_k ) end_POSTSUPERSCRIPT italic_E italic_S ( italic_k , roman_ℓ ) .

In the following section, using the full power of the book algorithm, we further improve on this bound and extend the improvement to the diagonal case.

3. Optimizing the book algorithm

In this section we present extensions of 4 and 5, which we use to give an upper bound R(k,)𝑅𝑘R(k,\ell)italic_R ( italic_k , roman_ℓ ) that improves on the bounds from [CGMS23]. Just like in 4 the main graph theoretical ideas are borrowed from[CGMS23], but now we need refine our inductive statement and to use every trick in the book from[CGMS23] making the argument substantially more technical. Namely:

  • instead of eR(X,Y)p|X||Y|subscript𝑒𝑅𝑋𝑌𝑝𝑋𝑌e_{R}(X,Y)-p|X||Y|italic_e start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ( italic_X , italic_Y ) - italic_p | italic_X | | italic_Y | we lower bound “higher moments” of density

    (eR(X,Y)p|X||Y|)r|X|1r|Y|1rsuperscriptsubscript𝑒𝑅𝑋𝑌𝑝𝑋𝑌𝑟superscript𝑋1𝑟superscript𝑌1𝑟(e_{R}(X,Y)-p|X||Y|)^{r}|X|^{1-r}|Y|^{1-r}( italic_e start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ( italic_X , italic_Y ) - italic_p | italic_X | | italic_Y | ) start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT | italic_X | start_POSTSUPERSCRIPT 1 - italic_r end_POSTSUPERSCRIPT | italic_Y | start_POSTSUPERSCRIPT 1 - italic_r end_POSTSUPERSCRIPT

    in the regime r𝑟r\to\inftyitalic_r → ∞,

  • we implement the arguments corresponding to big blue steps and degree regularization steps of the[CGMS23] book algorithm, which we did not need in4.

Instead of 2 we will need the following variant of “the convexity of density” bound.

Lemma 7.

Let (X,Y)𝑋𝑌(X,Y)( italic_X , italic_Y ) be a candidate. Then

vXd(X,NR(v)Y)|NR(v)Y|eR(X,Y)d(X,Y).subscript𝑣𝑋𝑑𝑋subscript𝑁𝑅𝑣𝑌subscript𝑁𝑅𝑣𝑌subscript𝑒𝑅𝑋𝑌𝑑𝑋𝑌\sum_{v\in X}d(X,N_{R}(v)\cap Y)|N_{R}(v)\cap Y|\geq e_{R}(X,Y)d(X,Y).∑ start_POSTSUBSCRIPT italic_v ∈ italic_X end_POSTSUBSCRIPT italic_d ( italic_X , italic_N start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ( italic_v ) ∩ italic_Y ) | italic_N start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ( italic_v ) ∩ italic_Y | ≥ italic_e start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ( italic_X , italic_Y ) italic_d ( italic_X , italic_Y ) .(8)
Proof.

We have

|X|𝑋\displaystyle|X|| italic_X |(vXd(X,NR(v)Y)|NR(v)Y|)=vX(yNR(x)Y|NR(y)X|)subscript𝑣𝑋𝑑𝑋subscript𝑁𝑅𝑣𝑌subscript𝑁𝑅𝑣𝑌subscript𝑣𝑋subscript𝑦subscript𝑁𝑅𝑥𝑌subscript𝑁𝑅𝑦𝑋\displaystyle\left(\sum_{v\in X}d(X,N_{R}(v)\cap Y)|N_{R}(v)\cap Y|\right)=%\sum_{v\in X}\left(\sum_{y\in N_{R}(x)\cap Y}|N_{R}(y)\cap X|\right)( ∑ start_POSTSUBSCRIPT italic_v ∈ italic_X end_POSTSUBSCRIPT italic_d ( italic_X , italic_N start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ( italic_v ) ∩ italic_Y ) | italic_N start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ( italic_v ) ∩ italic_Y | ) = ∑ start_POSTSUBSCRIPT italic_v ∈ italic_X end_POSTSUBSCRIPT ( ∑ start_POSTSUBSCRIPT italic_y ∈ italic_N start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ( italic_x ) ∩ italic_Y end_POSTSUBSCRIPT | italic_N start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ( italic_y ) ∩ italic_X | )
=yY|NR(y)X|2|Y|(yY|NR(y)X||Y|)2absentsubscript𝑦𝑌superscriptsubscript𝑁𝑅𝑦𝑋2𝑌superscriptsubscript𝑦𝑌subscript𝑁𝑅𝑦𝑋𝑌2\displaystyle=\sum_{y\in Y}|N_{R}(y)\cap X|^{2}\geq|Y|\left(\frac{\sum_{y\in Y%}|N_{R}(y)\cap X|}{|Y|}\right)^{2}= ∑ start_POSTSUBSCRIPT italic_y ∈ italic_Y end_POSTSUBSCRIPT | italic_N start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ( italic_y ) ∩ italic_X | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ≥ | italic_Y | ( divide start_ARG ∑ start_POSTSUBSCRIPT italic_y ∈ italic_Y end_POSTSUBSCRIPT | italic_N start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ( italic_y ) ∩ italic_X | end_ARG start_ARG | italic_Y | end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT
=(eR(X,Y))2|Y|=|X|eR(X,Y)d(X,Y),absentsuperscriptsubscript𝑒𝑅𝑋𝑌2𝑌𝑋subscript𝑒𝑅𝑋𝑌𝑑𝑋𝑌\displaystyle=\frac{(e_{R}(X,Y))^{2}}{|Y|}=|X|e_{R}(X,Y)d(X,Y),= divide start_ARG ( italic_e start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ( italic_X , italic_Y ) ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG | italic_Y | end_ARG = | italic_X | italic_e start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ( italic_X , italic_Y ) italic_d ( italic_X , italic_Y ) ,

where the inequality holds by convexity of the square function.∎

The next lemma allows us to extract a large blue book from X𝑋Xitalic_X if we find sufficiently many vertices with large blue neighborhood. It is essentially [CGMS23, Lemma 4.1] with a different choice of parameters. The proof is exactly the same, but we reproduce it for completeness.

Lemma 8.

Let 0<μ<10𝜇10<\mu<10 < italic_μ < 1, let b,k,m𝑏𝑘𝑚b,k,mitalic_b , italic_k , italic_m be positive integers with m5μ1b2𝑚5superscript𝜇1superscript𝑏2m\geq 5\mu^{-1}b^{2}italic_m ≥ 5 italic_μ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_b start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT. Let (X,Y)𝑋𝑌(X,Y)( italic_X , italic_Y ) be a candidate such that X5m2𝑋5superscript𝑚2X\geq 5m^{2}italic_X ≥ 5 italic_m start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT, and there exist at least R(k,m)𝑅𝑘𝑚R(k,m)italic_R ( italic_k , italic_m ) vertices vX𝑣𝑋v\in Xitalic_v ∈ italic_X such that

|NB(v)X|μ|X|.subscript𝑁𝐵𝑣𝑋𝜇𝑋|N_{B}(v)\cap X|\geq\mu|X|.| italic_N start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT ( italic_v ) ∩ italic_X | ≥ italic_μ | italic_X | .

Then X𝑋Xitalic_X contains a red Kksubscript𝐾𝑘K_{k}italic_K start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT or a blue book (S,T)𝑆𝑇(S,T)( italic_S , italic_T ) with |S|b𝑆𝑏|S|\geq b| italic_S | ≥ italic_b and |T|μb2|X|𝑇superscript𝜇𝑏2𝑋|T|\geq\frac{\mu^{b}}{2}|X|| italic_T | ≥ divide start_ARG italic_μ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT end_ARG start_ARG 2 end_ARG | italic_X |.

Proof.

Let W𝑊Witalic_W be the set of vertices vX𝑣𝑋v\in Xitalic_v ∈ italic_X such that |NB(v)X|μ|X|.subscript𝑁𝐵𝑣𝑋𝜇𝑋|N_{B}(v)\cap X|\geq\mu|X|.| italic_N start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT ( italic_v ) ∩ italic_X | ≥ italic_μ | italic_X | . As |W|R(k,m)𝑊𝑅𝑘𝑚|W|\geq R(k,m)| italic_W | ≥ italic_R ( italic_k , italic_m ), W𝑊Witalic_W contains a red Kksubscript𝐾𝑘K_{k}italic_K start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT or a blue Kmsubscript𝐾𝑚K_{m}italic_K start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT. In the first case the lemma holds, so we assume the second, and let U𝑈Uitalic_U be the set of vertices of the blue Kmsubscript𝐾𝑚K_{m}italic_K start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT in W𝑊Witalic_W. Let

σ=eB(U,XU)|U||XU|μ|X|m|X|μ(115b).𝜎subscript𝑒𝐵𝑈𝑋𝑈𝑈𝑋𝑈𝜇𝑋𝑚𝑋𝜇115𝑏\sigma=\frac{e_{B}(U,X\setminus U)}{|U||X\setminus U|}\geq\frac{\mu|X|-m}{|X|}%\geq\mu\left(1-\frac{1}{5b}\right).italic_σ = divide start_ARG italic_e start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT ( italic_U , italic_X ∖ italic_U ) end_ARG start_ARG | italic_U | | italic_X ∖ italic_U | end_ARG ≥ divide start_ARG italic_μ | italic_X | - italic_m end_ARG start_ARG | italic_X | end_ARG ≥ italic_μ ( 1 - divide start_ARG 1 end_ARG start_ARG 5 italic_b end_ARG ) .

Let S𝑆Sitalic_S be a subset of U𝑈Uitalic_U of size b𝑏bitalic_b chosen uniformly at random, and let T=|NB(S)(XU)|𝑇subscript𝑁𝐵𝑆𝑋𝑈T=|N_{B}(S)\cap(X\setminus U)|italic_T = | italic_N start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT ( italic_S ) ∩ ( italic_X ∖ italic_U ) | then

𝔼[T]𝔼delimited-[]𝑇\displaystyle\mathbb{E}[T]blackboard_E [ italic_T ]=(mb)1vXU(|NB(v)U|b)(mb)1(σmb)|XU|absentsuperscriptbinomial𝑚𝑏1subscript𝑣𝑋𝑈binomialsubscript𝑁𝐵𝑣𝑈𝑏superscriptbinomial𝑚𝑏1binomial𝜎𝑚𝑏𝑋𝑈\displaystyle=\binom{m}{b}^{-1}\sum_{v\in X\setminus U}\binom{|N_{B}(v)\cap U|%}{b}\geq\binom{m}{b}^{-1}\binom{\sigma m}{b}|X\setminus U|= ( FRACOP start_ARG italic_m end_ARG start_ARG italic_b end_ARG ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ∑ start_POSTSUBSCRIPT italic_v ∈ italic_X ∖ italic_U end_POSTSUBSCRIPT ( FRACOP start_ARG | italic_N start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT ( italic_v ) ∩ italic_U | end_ARG start_ARG italic_b end_ARG ) ≥ ( FRACOP start_ARG italic_m end_ARG start_ARG italic_b end_ARG ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( FRACOP start_ARG italic_σ italic_m end_ARG start_ARG italic_b end_ARG ) | italic_X ∖ italic_U |
σbexp(b2σm)|XU|μb(115b)be1/5(1b|X|)|X|absentsuperscript𝜎𝑏superscript𝑏2𝜎𝑚𝑋𝑈superscript𝜇𝑏superscript115𝑏𝑏superscript𝑒151𝑏𝑋𝑋\displaystyle\geq\sigma^{b}\exp\left(-\frac{b^{2}}{\sigma m}\right)|X\setminusU%|\geq\mu^{b}\left(1-\frac{1}{5b}\right)^{b}e^{-1/5}\left(1-\frac{b}{|X|}\right%)|X|≥ italic_σ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT roman_exp ( - divide start_ARG italic_b start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_σ italic_m end_ARG ) | italic_X ∖ italic_U | ≥ italic_μ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT ( 1 - divide start_ARG 1 end_ARG start_ARG 5 italic_b end_ARG ) start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT - 1 / 5 end_POSTSUPERSCRIPT ( 1 - divide start_ARG italic_b end_ARG start_ARG | italic_X | end_ARG ) | italic_X |
45e2/5μb|X|μb2|X|.absent45superscript𝑒25superscript𝜇𝑏𝑋superscript𝜇𝑏2𝑋\displaystyle\geq\frac{4}{5}e^{-2/5}\mu^{b}|X|\geq\frac{\mu^{b}}{2}|X|.≥ divide start_ARG 4 end_ARG start_ARG 5 end_ARG italic_e start_POSTSUPERSCRIPT - 2 / 5 end_POSTSUPERSCRIPT italic_μ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT | italic_X | ≥ divide start_ARG italic_μ start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT end_ARG start_ARG 2 end_ARG | italic_X | .

As (S,T)𝑆𝑇(S,T)( italic_S , italic_T ) is a blue book, there exists a desired choice of T𝑇Titalic_T.∎

In Section2 we used 3 to upper bound Ramsey numbers in what was essentially the base case of the book algorithm, or, more precisely, the case when we consider a candidate (X,Y)𝑋𝑌(X,Y)( italic_X , italic_Y ) with |X|𝑋|X|| italic_X | small. In this section we tighten all aspects of our argument and, in particular, instead of 3 we would like to apply increasingly stronger upper bounds of the same form, which we iteratively obtain.

We use the following slightly technical setup to encode the bounds we can use.Let \mathcal{R}caligraphic_R be the closure of the set of all pairs (x,y)(0,1)2𝑥𝑦superscript012(x,y)\in(0,1)^{2}( italic_x , italic_y ) ∈ ( 0 , 1 ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT such that there exists N0=N0(x,y)subscript𝑁0subscript𝑁0𝑥𝑦N_{0}=N_{0}(x,y)italic_N start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = italic_N start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_x , italic_y ) such that R(k,)xky𝑅𝑘superscript𝑥𝑘superscript𝑦R(k,\ell)\leq x^{-k}y^{-\ell}italic_R ( italic_k , roman_ℓ ) ≤ italic_x start_POSTSUPERSCRIPT - italic_k end_POSTSUPERSCRIPT italic_y start_POSTSUPERSCRIPT - roman_ℓ end_POSTSUPERSCRIPT for all k+N0𝑘subscript𝑁0k+\ell\geq N_{0}italic_k + roman_ℓ ≥ italic_N start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT. Let subscript\mathcal{R_{*}}caligraphic_R start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT be the interior of \mathcal{R}caligraphic_R.

The next easy observation records the properties of \mathcal{R}caligraphic_R and subscript\mathcal{R_{*}}caligraphic_R start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT.

Observation 9.
  1. (1)

    (x,1x)𝑥1𝑥(x,1-x)\in\mathcal{R}( italic_x , 1 - italic_x ) ∈ caligraphic_R for all 0<x<10𝑥10<x<10 < italic_x < 1,

  2. (2)

    if (x,y)𝑥𝑦(x,y)\in\mathcal{R}( italic_x , italic_y ) ∈ caligraphic_R, 0<xx,0<yyformulae-sequence0superscript𝑥𝑥0superscript𝑦𝑦0<x^{\prime}\leq x,0<y^{\prime}\leq y0 < italic_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ≤ italic_x , 0 < italic_y start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ≤ italic_y then (x,y)superscript𝑥superscript𝑦(x^{\prime},y^{\prime})\in\mathcal{R}( italic_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , italic_y start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ∈ caligraphic_R,

  3. (3)

    if (x,y)𝑥𝑦(x,y)\in\mathcal{R}( italic_x , italic_y ) ∈ caligraphic_R, 0<x<x,0<y<yformulae-sequence0superscript𝑥𝑥0superscript𝑦𝑦0<x^{\prime}<x,0<y^{\prime}<y0 < italic_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT < italic_x , 0 < italic_y start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT < italic_y then (x,y)superscript𝑥superscript𝑦subscript(x^{\prime},y^{\prime})\in\mathcal{R}_{*}( italic_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , italic_y start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ∈ caligraphic_R start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT,

  4. (4)

    if R(k,l)xk+o(k)y+o()𝑅𝑘𝑙superscript𝑥𝑘𝑜𝑘superscript𝑦𝑜R(k,l)\leq x^{-k+o(k)}y^{-\ell+o(\ell)}italic_R ( italic_k , italic_l ) ≤ italic_x start_POSTSUPERSCRIPT - italic_k + italic_o ( italic_k ) end_POSTSUPERSCRIPT italic_y start_POSTSUPERSCRIPT - roman_ℓ + italic_o ( roman_ℓ ) end_POSTSUPERSCRIPT for all positive integers k𝑘kitalic_k and \ellroman_ℓ then (x,y)𝑥𝑦(x,y)\in\mathcal{R}( italic_x , italic_y ) ∈ caligraphic_R.

Proof.

3 implies (1). As (x)k(y)xkyellsuperscriptsuperscript𝑥𝑘superscriptsuperscript𝑦superscript𝑥𝑘superscript𝑦𝑒𝑙𝑙(x^{\prime})^{-k}(y^{\prime})^{-\ell}\leq x^{-k}y^{-ell}( italic_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT - italic_k end_POSTSUPERSCRIPT ( italic_y start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT - roman_ℓ end_POSTSUPERSCRIPT ≤ italic_x start_POSTSUPERSCRIPT - italic_k end_POSTSUPERSCRIPT italic_y start_POSTSUPERSCRIPT - italic_e italic_l italic_l end_POSTSUPERSCRIPT for 0<xx,0<yyformulae-sequence0superscript𝑥𝑥0superscript𝑦𝑦0<x^{\prime}\leq x,0<y^{\prime}\leq y0 < italic_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ≤ italic_x , 0 < italic_y start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ≤ italic_y, (2) holds and implies (3).

Finally, (4) holds as the condition R(k,l)xk+o(k)y+o()𝑅𝑘𝑙superscript𝑥𝑘𝑜𝑘superscript𝑦𝑜R(k,l)\leq x^{-k+o(k)}y^{-\ell+o(\ell)}italic_R ( italic_k , italic_l ) ≤ italic_x start_POSTSUPERSCRIPT - italic_k + italic_o ( italic_k ) end_POSTSUPERSCRIPT italic_y start_POSTSUPERSCRIPT - roman_ℓ + italic_o ( roman_ℓ ) end_POSTSUPERSCRIPT implies that for all x<x,y<yformulae-sequencesuperscript𝑥𝑥superscript𝑦𝑦x^{\prime}<x,y^{\prime}<yitalic_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT < italic_x , italic_y start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT < italic_y there exists N0subscript𝑁0N_{0}italic_N start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT such that for all positive integers k𝑘kitalic_k and \ellroman_ℓ with k+N0𝑘subscript𝑁0k+\ell\geq N_{0}italic_k + roman_ℓ ≥ italic_N start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT we have R(k,l)(x)k(y)𝑅𝑘𝑙superscriptsuperscript𝑥𝑘superscriptsuperscript𝑦R(k,l)\leq(x^{\prime})^{-k}(y^{\prime})^{-\ell}italic_R ( italic_k , italic_l ) ≤ ( italic_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT - italic_k end_POSTSUPERSCRIPT ( italic_y start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT - roman_ℓ end_POSTSUPERSCRIPT.∎

Finally, we need the following straightforward limit evaluation.

Lemma 10.

For all 1>p>μ>01𝑝𝜇01>p>\mu>01 > italic_p > italic_μ > 0

limr(p1/rμ)r(1μ)1r=p11μ(1μ)subscript𝑟superscriptsuperscript𝑝1𝑟𝜇𝑟superscript1𝜇1𝑟superscript𝑝11𝜇1𝜇\lim_{r\to\infty}(p^{1/r}-\mu)^{r}(1-\mu)^{1-r}=p^{\frac{1}{1-\mu}}(1-\mu)roman_lim start_POSTSUBSCRIPT italic_r → ∞ end_POSTSUBSCRIPT ( italic_p start_POSTSUPERSCRIPT 1 / italic_r end_POSTSUPERSCRIPT - italic_μ ) start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT ( 1 - italic_μ ) start_POSTSUPERSCRIPT 1 - italic_r end_POSTSUPERSCRIPT = italic_p start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 1 - italic_μ end_ARG end_POSTSUPERSCRIPT ( 1 - italic_μ )(9)
Proof.

We have

limrsubscript𝑟\displaystyle\lim_{r\to\infty}roman_lim start_POSTSUBSCRIPT italic_r → ∞ end_POSTSUBSCRIPTlog((p1/rμ)r(1μ)r)superscriptsuperscript𝑝1𝑟𝜇𝑟superscript1𝜇𝑟\displaystyle\log\left((p^{1/r}-\mu)^{r}(1-\mu)^{-r}\right)roman_log ( ( italic_p start_POSTSUPERSCRIPT 1 / italic_r end_POSTSUPERSCRIPT - italic_μ ) start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT ( 1 - italic_μ ) start_POSTSUPERSCRIPT - italic_r end_POSTSUPERSCRIPT )
=limr(rlog(1+p1/r11μ))=limr(r(p1/r1))1μ=logp1μ,absentsubscript𝑟𝑟1superscript𝑝1𝑟11𝜇subscript𝑟𝑟superscript𝑝1𝑟11𝜇𝑝1𝜇\displaystyle=\lim_{r\to\infty}\left(r\log\left(1+\frac{p^{1/r}-1}{1-\mu}%\right)\right)=\frac{\lim_{r\to\infty}\left(r(p^{1/r}-1)\right)}{1-\mu}=\frac{%\log p}{1-\mu},= roman_lim start_POSTSUBSCRIPT italic_r → ∞ end_POSTSUBSCRIPT ( italic_r roman_log ( 1 + divide start_ARG italic_p start_POSTSUPERSCRIPT 1 / italic_r end_POSTSUPERSCRIPT - 1 end_ARG start_ARG 1 - italic_μ end_ARG ) ) = divide start_ARG roman_lim start_POSTSUBSCRIPT italic_r → ∞ end_POSTSUBSCRIPT ( italic_r ( italic_p start_POSTSUPERSCRIPT 1 / italic_r end_POSTSUPERSCRIPT - 1 ) ) end_ARG start_ARG 1 - italic_μ end_ARG = divide start_ARG roman_log italic_p end_ARG start_ARG 1 - italic_μ end_ARG ,

implying (9).∎

We are now ready for the main technical result of this section, which tightens4.

Lemma 11.

For all 0<μ0,x0,y0,p<1formulae-sequence0subscript𝜇0subscript𝑥0subscript𝑦0𝑝10<\mu_{0},x_{0},y_{0},p<10 < italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_p < 1 such that x0<p11μ0(1μ0)subscript𝑥0superscript𝑝11subscript𝜇01subscript𝜇0x_{0}<p^{\frac{1}{1-\mu_{0}}}(1-\mu_{0})italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT < italic_p start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 1 - italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG end_POSTSUPERSCRIPT ( 1 - italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) and (x0,y0)subscript𝑥0subscript𝑦0subscript(x_{0},y_{0})\in\mathcal{R_{*}}( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) ∈ caligraphic_R start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT there exists L0subscript𝐿0L_{0}italic_L start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT such that for all positive integers k,,t𝑘𝑡k,\ell,titalic_k , roman_ℓ , italic_t with L0subscript𝐿0\ell\geq L_{0}roman_ℓ ≥ italic_L start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT the following holds.Let (X,Y)𝑋𝑌(X,Y)( italic_X , italic_Y ) be a candidate such that d(X,Y)p𝑑𝑋𝑌𝑝d(X,Y)\geq pitalic_d ( italic_X , italic_Y ) ≥ italic_p and

|X||Y|x0ky0μ0t𝑋𝑌superscriptsubscript𝑥0𝑘superscriptsubscript𝑦0superscriptsubscript𝜇0𝑡|X||Y|\geq x_{0}^{-k}y_{0}^{-\ell}\mu_{0}^{-t}| italic_X | | italic_Y | ≥ italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - italic_k end_POSTSUPERSCRIPT italic_y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - roman_ℓ end_POSTSUPERSCRIPT italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - italic_t end_POSTSUPERSCRIPT(10)

then (X,Y)𝑋𝑌(X,Y)( italic_X , italic_Y ) is (k,,t)𝑘𝑡(k,\ell,t)( italic_k , roman_ℓ , italic_t )-good.

Proof.

We start by quantifying the “extra room” implicit in the strict inequality x0<p11μ0(1μ0)subscript𝑥0superscript𝑝11subscript𝜇01subscript𝜇0x_{0}<p^{\frac{1}{1-\mu_{0}}}(1-\mu_{0})italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT < italic_p start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 1 - italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG end_POSTSUPERSCRIPT ( 1 - italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) and the condition (x0,y0)subscript𝑥0subscript𝑦0subscript(x_{0},y_{0})\in\mathcal{R_{*}}( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) ∈ caligraphic_R start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT. More precisely, using 10 and the condition x0<p11μ0(1μ0)subscript𝑥0superscript𝑝11subscript𝜇01subscript𝜇0x_{0}<p^{\frac{1}{1-\mu_{0}}}(1-\mu_{0})italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT < italic_p start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 1 - italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG end_POSTSUPERSCRIPT ( 1 - italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ), which, in particular, implies x0+μ0<1subscript𝑥0subscript𝜇01x_{0}+\mu_{0}<1italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT + italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT < 1, as well as the conditions (x0,y0)subscript𝑥0subscript𝑦0subscript(x_{0},y_{0})\in\mathcal{R_{*}}( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) ∈ caligraphic_R start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT, and μ0<1subscript𝜇01\mu_{0}<1italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT < 1, we deduce that there exist ε>0,r1formulae-sequence𝜀0𝑟1\varepsilon>0,r\geq 1italic_ε > 0 , italic_r ≥ 1 such that

(1+ε)(μ0+ε)1,μ0+x0+2ε1,(x0+2ε,y0+2ε),p2εformulae-sequence1𝜀subscript𝜇0𝜀1formulae-sequencesubscript𝜇0subscript𝑥02𝜀1formulae-sequencesubscript𝑥02𝜀subscript𝑦02𝜀𝑝2𝜀(1+\varepsilon)(\mu_{0}+\varepsilon)\leq 1,\qquad\mu_{0}+x_{0}+2\varepsilon%\leq 1,\qquad(x_{0}+2\varepsilon,y_{0}+2\varepsilon)\in\mathcal{R},\qquad p%\geq 2\varepsilon( 1 + italic_ε ) ( italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT + italic_ε ) ≤ 1 , italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT + italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT + 2 italic_ε ≤ 1 , ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT + 2 italic_ε , italic_y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT + 2 italic_ε ) ∈ caligraphic_R , italic_p ≥ 2 italic_ε
andx0((pε)1/rμ03ε)r(1μ0ε)1rε.andsubscript𝑥0superscriptsuperscript𝑝𝜀1𝑟subscript𝜇03𝜀𝑟superscript1subscript𝜇0𝜀1𝑟𝜀\qquad\mathrm{and}\qquad x_{0}\leq((p-\varepsilon)^{1/r}-\mu_{0}-3\varepsilon)%^{r}(1-\mu_{0}-\varepsilon)^{1-r}-\varepsilon.roman_and italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ≤ ( ( italic_p - italic_ε ) start_POSTSUPERSCRIPT 1 / italic_r end_POSTSUPERSCRIPT - italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT - 3 italic_ε ) start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT ( 1 - italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT - italic_ε ) start_POSTSUPERSCRIPT 1 - italic_r end_POSTSUPERSCRIPT - italic_ε .(11)

We choose L0subscript𝐿0L_{0}italic_L start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT implicitly to be sufficiently large as a function of ε𝜀\varepsilonitalic_ε and r𝑟ritalic_r to satisfy the inequalities throughout the proof.Let x=x0+ε𝑥subscript𝑥0𝜀x=x_{0}+\varepsilonitalic_x = italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT + italic_ε, y=y0+ε,μ=μ0+εformulae-sequence𝑦subscript𝑦0𝜀𝜇subscript𝜇0𝜀y=y_{0}+\varepsilon,\mu=\mu_{0}+\varepsilonitalic_y = italic_y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT + italic_ε , italic_μ = italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT + italic_ε, δn=εnsubscript𝛿𝑛𝜀𝑛\delta_{n}=\frac{\varepsilon}{n}italic_δ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = divide start_ARG italic_ε end_ARG start_ARG italic_n end_ARG. Note that by (11) we have x<1𝑥1x<1italic_x < 1 and so x0=xεx1+εsubscript𝑥0𝑥𝜀𝑥1𝜀x_{0}=x-\varepsilon\leq\frac{x}{1+\varepsilon}italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = italic_x - italic_ε ≤ divide start_ARG italic_x end_ARG start_ARG 1 + italic_ε end_ARG. Similarly, y0x1+εsubscript𝑦0𝑥1𝜀y_{0}\leq\frac{x}{1+\varepsilon}italic_y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ≤ divide start_ARG italic_x end_ARG start_ARG 1 + italic_ε end_ARG and μ0μ1+εsubscript𝜇0𝜇1𝜀\mu_{0}\leq\frac{\mu}{1+\varepsilon}italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ≤ divide start_ARG italic_μ end_ARG start_ARG 1 + italic_ε end_ARG.Note that

(d(X,Y)\displaystyle(d(X,Y)( italic_d ( italic_X , italic_Y )+δk+tp)r|X||Y|(10)εr(k+t)rx0ky0μ0t\displaystyle+\delta_{k+t}-p)^{r}|X||Y|\stackrel{{\scriptstyle\eqref{e:%bookmain}}}{{\geq}}\frac{\varepsilon^{r}}{(k+t)^{r}}x_{0}^{-k}y_{0}^{-\ell}\mu%_{0}^{-t}+ italic_δ start_POSTSUBSCRIPT italic_k + italic_t end_POSTSUBSCRIPT - italic_p ) start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT | italic_X | | italic_Y | start_RELOP SUPERSCRIPTOP start_ARG ≥ end_ARG start_ARG italic_( italic_) end_ARG end_RELOP divide start_ARG italic_ε start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT end_ARG start_ARG ( italic_k + italic_t ) start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT end_ARG italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - italic_k end_POSTSUPERSCRIPT italic_y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - roman_ℓ end_POSTSUPERSCRIPT italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - italic_t end_POSTSUPERSCRIPT
εr(k+t)r(1+ε)k++txkyμtxkyμt,absentsuperscript𝜀𝑟superscript𝑘𝑡𝑟superscript1𝜀𝑘𝑡superscript𝑥𝑘superscript𝑦superscript𝜇𝑡superscript𝑥𝑘superscript𝑦superscript𝜇𝑡\displaystyle\geq\frac{\varepsilon^{r}}{(k+t)^{r}}(1+\varepsilon)^{k+\ell+t}x^%{-k}y^{-\ell}\mu^{-t}\geq x^{-k}y^{-\ell}\mu^{-t},≥ divide start_ARG italic_ε start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT end_ARG start_ARG ( italic_k + italic_t ) start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT end_ARG ( 1 + italic_ε ) start_POSTSUPERSCRIPT italic_k + roman_ℓ + italic_t end_POSTSUPERSCRIPT italic_x start_POSTSUPERSCRIPT - italic_k end_POSTSUPERSCRIPT italic_y start_POSTSUPERSCRIPT - roman_ℓ end_POSTSUPERSCRIPT italic_μ start_POSTSUPERSCRIPT - italic_t end_POSTSUPERSCRIPT ≥ italic_x start_POSTSUPERSCRIPT - italic_k end_POSTSUPERSCRIPT italic_y start_POSTSUPERSCRIPT - roman_ℓ end_POSTSUPERSCRIPT italic_μ start_POSTSUPERSCRIPT - italic_t end_POSTSUPERSCRIPT ,(12)

where the last inequality holds as long as L0subscript𝐿0L_{0}italic_L start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT is sufficiently large as a function of ε𝜀\varepsilonitalic_ε and r𝑟ritalic_r.

We will prove by induction on k+t𝑘𝑡k+titalic_k + italic_t for fixed L0subscript𝐿0\ell\geq L_{0}roman_ℓ ≥ italic_L start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT that if (X,Y)𝑋𝑌(X,Y)( italic_X , italic_Y ) is a candidate with d(X,Y)pδk+t𝑑𝑋𝑌𝑝subscript𝛿𝑘𝑡d(X,Y)\geq p-\delta_{k+t}italic_d ( italic_X , italic_Y ) ≥ italic_p - italic_δ start_POSTSUBSCRIPT italic_k + italic_t end_POSTSUBSCRIPT such that

(d(X,Y)+δk+tp)r|X||Y|xkyμtsuperscript𝑑𝑋𝑌subscript𝛿𝑘𝑡𝑝𝑟𝑋𝑌superscript𝑥𝑘superscript𝑦superscript𝜇𝑡(d(X,Y)+\delta_{k+t}-p)^{r}|X||Y|\geq x^{-k}y^{-\ell}\mu^{-t}( italic_d ( italic_X , italic_Y ) + italic_δ start_POSTSUBSCRIPT italic_k + italic_t end_POSTSUBSCRIPT - italic_p ) start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT | italic_X | | italic_Y | ≥ italic_x start_POSTSUPERSCRIPT - italic_k end_POSTSUPERSCRIPT italic_y start_POSTSUPERSCRIPT - roman_ℓ end_POSTSUPERSCRIPT italic_μ start_POSTSUPERSCRIPT - italic_t end_POSTSUPERSCRIPT(13)

then(X,Y)𝑋𝑌(X,Y)( italic_X , italic_Y ) is (k,,t)𝑘𝑡(k,\ell,t)( italic_k , roman_ℓ , italic_t )-good. By (12) this implies the theorem.

If k=1𝑘1k=1italic_k = 1 or t=1𝑡1t=1italic_t = 1 then (X,Y)𝑋𝑌(X,Y)( italic_X , italic_Y ) is trivially (k,,t)𝑘𝑡(k,\ell,t)( italic_k , roman_ℓ , italic_t )-good, implying, in particular the base case of our statement. Thus we move on to the induction step and assume k,t2𝑘𝑡2k,t\geq 2italic_k , italic_t ≥ 2.

We assume without loss of generality that |NR(v)Y|(pδk+t)|Y|subscript𝑁𝑅𝑣𝑌𝑝subscript𝛿𝑘𝑡𝑌|N_{R}(v)\cap Y|\geq(p-\delta_{k+t})|Y|| italic_N start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ( italic_v ) ∩ italic_Y | ≥ ( italic_p - italic_δ start_POSTSUBSCRIPT italic_k + italic_t end_POSTSUBSCRIPT ) | italic_Y | for every vX𝑣𝑋v\in Xitalic_v ∈ italic_X, as otherwise we can replace X𝑋Xitalic_X by Xv𝑋𝑣X\setminus vitalic_X ∖ italic_v increasing the left side of (13) as

(d(X,Y)+δk+tp)r|X||Y|=(d(X,Y)+δk+tp)r1(eR(X,Y)(pδk+t)|X||Y|),superscript𝑑𝑋𝑌subscript𝛿𝑘𝑡𝑝𝑟𝑋𝑌superscript𝑑𝑋𝑌subscript𝛿𝑘𝑡𝑝𝑟1subscript𝑒𝑅𝑋𝑌𝑝subscript𝛿𝑘𝑡𝑋𝑌(d(X,Y)+\delta_{k+t}-p)^{r}|X||Y|=(d(X,Y)+\delta_{k+t}-p)^{r-1}(e_{R}(X,Y)-(p-%\delta_{k+t})|X||Y|),( italic_d ( italic_X , italic_Y ) + italic_δ start_POSTSUBSCRIPT italic_k + italic_t end_POSTSUBSCRIPT - italic_p ) start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT | italic_X | | italic_Y | = ( italic_d ( italic_X , italic_Y ) + italic_δ start_POSTSUBSCRIPT italic_k + italic_t end_POSTSUBSCRIPT - italic_p ) start_POSTSUPERSCRIPT italic_r - 1 end_POSTSUPERSCRIPT ( italic_e start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ( italic_X , italic_Y ) - ( italic_p - italic_δ start_POSTSUBSCRIPT italic_k + italic_t end_POSTSUBSCRIPT ) | italic_X | | italic_Y | ) ,

and both terms on the right side of this identity increase after the replacement. Thus

d(X,Y)pδk+t𝑑superscript𝑋𝑌𝑝subscript𝛿𝑘𝑡d(X^{\prime},Y)\geq p-\delta_{k+t}italic_d ( italic_X start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , italic_Y ) ≥ italic_p - italic_δ start_POSTSUBSCRIPT italic_k + italic_t end_POSTSUBSCRIPT(14)

for every XX,X.formulae-sequencesuperscript𝑋𝑋superscript𝑋X^{\prime}\subseteq X,X^{\prime}\neq\emptyset.italic_X start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ⊆ italic_X , italic_X start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ≠ ∅ . For readers familiar with[CGMS23] we will indicate how the steps in our proof correspond to steps of their book algorithm. The observation in this paragraph corresponds to the degree regularization step of the book algorithm.

Next we use (13) to obtain a lower bound on |X|𝑋|X|| italic_X | by first upper bounding |Y|𝑌|Y|| italic_Y |.If |Y|(x+ε)k(y+ε)𝑌superscript𝑥𝜀𝑘superscript𝑦𝜀|Y|\geq(x+\varepsilon)^{-k}(y+\varepsilon)^{-\ell}| italic_Y | ≥ ( italic_x + italic_ε ) start_POSTSUPERSCRIPT - italic_k end_POSTSUPERSCRIPT ( italic_y + italic_ε ) start_POSTSUPERSCRIPT - roman_ℓ end_POSTSUPERSCRIPT then Y𝑌Yitalic_Y contains a red Kksubscript𝐾𝑘K_{k}italic_K start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT or a blue Ksubscript𝐾K_{\ell}italic_K start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT as (x+ε,y+ε)𝑥𝜀𝑦𝜀subscript(x+\varepsilon,y+\varepsilon)\in\mathcal{R_{*}}( italic_x + italic_ε , italic_y + italic_ε ) ∈ caligraphic_R start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT by 9 (3) and so (X,Y)𝑋𝑌(X,Y)( italic_X , italic_Y ) is (k,,t)𝑘𝑡(k,\ell,t)( italic_k , roman_ℓ , italic_t )-good.Thus we may assume that

|X|𝑋\displaystyle|X|| italic_X |(13)xkyμt(d(X,Y)+δk+tp)r|Y|xkyμt(x+ε)k(y+ε)superscriptitalic-(13italic-)absentsuperscript𝑥𝑘superscript𝑦superscript𝜇𝑡superscript𝑑𝑋𝑌subscript𝛿𝑘𝑡𝑝𝑟𝑌superscript𝑥𝑘superscript𝑦superscript𝜇𝑡superscript𝑥𝜀𝑘superscript𝑦𝜀\displaystyle\stackrel{{\scriptstyle\eqref{e:moment}}}{{\geq}}\frac{x^{-k}y^{-%\ell}\mu^{-t}}{(d(X,Y)+\delta_{k+t}-p)^{r}|Y|}\geq\frac{x^{-k}y^{-\ell}\mu^{-t%}}{(x+\varepsilon)^{-k}(y+\varepsilon)^{-\ell}}start_RELOP SUPERSCRIPTOP start_ARG ≥ end_ARG start_ARG italic_( italic_) end_ARG end_RELOP divide start_ARG italic_x start_POSTSUPERSCRIPT - italic_k end_POSTSUPERSCRIPT italic_y start_POSTSUPERSCRIPT - roman_ℓ end_POSTSUPERSCRIPT italic_μ start_POSTSUPERSCRIPT - italic_t end_POSTSUPERSCRIPT end_ARG start_ARG ( italic_d ( italic_X , italic_Y ) + italic_δ start_POSTSUBSCRIPT italic_k + italic_t end_POSTSUBSCRIPT - italic_p ) start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT | italic_Y | end_ARG ≥ divide start_ARG italic_x start_POSTSUPERSCRIPT - italic_k end_POSTSUPERSCRIPT italic_y start_POSTSUPERSCRIPT - roman_ℓ end_POSTSUPERSCRIPT italic_μ start_POSTSUPERSCRIPT - italic_t end_POSTSUPERSCRIPT end_ARG start_ARG ( italic_x + italic_ε ) start_POSTSUPERSCRIPT - italic_k end_POSTSUPERSCRIPT ( italic_y + italic_ε ) start_POSTSUPERSCRIPT - roman_ℓ end_POSTSUPERSCRIPT end_ARG
(x+εx)k(y+εy)μt(1+ε)k++t.absentsuperscript𝑥𝜀𝑥𝑘superscript𝑦𝜀𝑦superscript𝜇𝑡superscript1𝜀𝑘𝑡\displaystyle\geq\left(\frac{x+\varepsilon}{x}\right)^{k}\left(\frac{y+%\varepsilon}{y}\right)^{\ell}\mu^{-t}\geq(1+\varepsilon)^{k+\ell+t}.≥ ( divide start_ARG italic_x + italic_ε end_ARG start_ARG italic_x end_ARG ) start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT ( divide start_ARG italic_y + italic_ε end_ARG start_ARG italic_y end_ARG ) start_POSTSUPERSCRIPT roman_ℓ end_POSTSUPERSCRIPT italic_μ start_POSTSUPERSCRIPT - italic_t end_POSTSUPERSCRIPT ≥ ( 1 + italic_ε ) start_POSTSUPERSCRIPT italic_k + roman_ℓ + italic_t end_POSTSUPERSCRIPT .(15)

Our next goal is to show that most of the vertices of X𝑋Xitalic_X have blue degree at most (μ+ε)|X|𝜇𝜀𝑋(\mu+\varepsilon)|X|( italic_μ + italic_ε ) | italic_X | as otherwise using 8 we can apply the induction hypothesis to the candidate (T,X)𝑇𝑋(T,X)( italic_T , italic_X ) where (S,T)𝑆𝑇(S,T)( italic_S , italic_T ) is a large blue book in X𝑋Xitalic_X guaranteed by8 and (3). This part of the proof corresponds to the big blue step.

Let

b=2rlog(k+t)rlogε+log2log(1+ε),m=5μ1b2,andw=R(k,m)formulae-sequence𝑏2𝑟𝑘𝑡𝑟𝜀21𝜀formulae-sequence𝑚5superscript𝜇1superscript𝑏2and𝑤𝑅𝑘𝑚b=\left\lceil\frac{2r\log(k+t)-r\log{\varepsilon}+\log{2}}{\log(1+\varepsilon)%}\right\rceil,m=\lceil 5\mu^{-1}b^{2}\rceil,\qquad\mathrm{and}\qquad w=R(k,m)italic_b = ⌈ divide start_ARG 2 italic_r roman_log ( italic_k + italic_t ) - italic_r roman_log italic_ε + roman_log 2 end_ARG start_ARG roman_log ( 1 + italic_ε ) end_ARG ⌉ , italic_m = ⌈ 5 italic_μ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_b start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ⌉ , roman_and italic_w = italic_R ( italic_k , italic_m )

with the first two being the parameters we will use in 8.Note that mClog2(k+t),𝑚𝐶superscript2𝑘𝑡m\leq C\log^{2}(k+t),italic_m ≤ italic_C roman_log start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_k + italic_t ) , where C𝐶Citalic_C is a constant depending only on r𝑟ritalic_r and ε𝜀\varepsilonitalic_ε. As R(k,m)kmexp(Clog3(k+t))𝑅𝑘𝑚superscript𝑘𝑚𝐶superscript3𝑘𝑡R(k,m)\leq k^{m}\leq\exp(C\log^{3}(k+t))italic_R ( italic_k , italic_m ) ≤ italic_k start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT ≤ roman_exp ( italic_C roman_log start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ( italic_k + italic_t ) ), by (3) we can choose L0subscript𝐿0L_{0}italic_L start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT large enough so that

|X|5m2andwε(pε)(k+t)3|X|formulae-sequence𝑋5superscript𝑚2and𝑤𝜀𝑝𝜀superscript𝑘𝑡3𝑋|X|\geq 5m^{2}\qquad\mathrm{and}\qquad w\leq\frac{\varepsilon(p-\varepsilon)}{%(k+t)^{3}}|X|| italic_X | ≥ 5 italic_m start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_and italic_w ≤ divide start_ARG italic_ε ( italic_p - italic_ε ) end_ARG start_ARG ( italic_k + italic_t ) start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG | italic_X |(16)

Let W={xX||NB(x)X|(μ+ε)|X|}𝑊conditional-set𝑥𝑋subscript𝑁𝐵𝑥𝑋𝜇𝜀𝑋W=\{x\in X\>|\>|N_{B}(x)\cap X|\geq(\mu+\varepsilon)|X|\}italic_W = { italic_x ∈ italic_X | | italic_N start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT ( italic_x ) ∩ italic_X | ≥ ( italic_μ + italic_ε ) | italic_X | }. Suppose first that |W|w𝑊𝑤|W|\geq w| italic_W | ≥ italic_w. Then by 8, X𝑋Xitalic_X contains a red Kksubscript𝐾𝑘K_{k}italic_K start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT or a blue book (S,T)𝑆𝑇(S,T)( italic_S , italic_T ) with |S|b𝑆𝑏|S|\geq b| italic_S | ≥ italic_b and |T|(μ+ε)b2|X|𝑇superscript𝜇𝜀𝑏2𝑋|T|\geq\frac{(\mu+\varepsilon)^{b}}{2}|X|| italic_T | ≥ divide start_ARG ( italic_μ + italic_ε ) start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT end_ARG start_ARG 2 end_ARG | italic_X |. In the first case (X,Y)𝑋𝑌(X,Y)( italic_X , italic_Y ) is (k,,t)𝑘𝑡(k,\ell,t)( italic_k , roman_ℓ , italic_t )-good, and thus we may assume that the second case holds.As d(T,Y)pδk+t𝑑𝑇𝑌𝑝subscript𝛿𝑘𝑡d(T,Y)\geq p-\delta_{k+t}italic_d ( italic_T , italic_Y ) ≥ italic_p - italic_δ start_POSTSUBSCRIPT italic_k + italic_t end_POSTSUBSCRIPT by (14), we have d(T,Y)+δk+tbpδk+t1δk+tε(k+t)2.𝑑𝑇𝑌subscript𝛿𝑘𝑡𝑏𝑝subscript𝛿𝑘𝑡1subscript𝛿𝑘𝑡𝜀superscript𝑘𝑡2d(T,Y)+\delta_{k+t-b}-p\geq\delta_{k+t-1}-\delta_{k+t}\geq\frac{\varepsilon}{(%k+t)^{2}}.italic_d ( italic_T , italic_Y ) + italic_δ start_POSTSUBSCRIPT italic_k + italic_t - italic_b end_POSTSUBSCRIPT - italic_p ≥ italic_δ start_POSTSUBSCRIPT italic_k + italic_t - 1 end_POSTSUBSCRIPT - italic_δ start_POSTSUBSCRIPT italic_k + italic_t end_POSTSUBSCRIPT ≥ divide start_ARG italic_ε end_ARG start_ARG ( italic_k + italic_t ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG .Thus

(d(T,Y)+δk+tbp)r|T||Y|superscript𝑑𝑇𝑌subscript𝛿𝑘𝑡𝑏𝑝𝑟𝑇𝑌\displaystyle(d(T,Y)+\delta_{k+t-b}-p)^{r}|T||Y|( italic_d ( italic_T , italic_Y ) + italic_δ start_POSTSUBSCRIPT italic_k + italic_t - italic_b end_POSTSUBSCRIPT - italic_p ) start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT | italic_T | | italic_Y |(ε(k+t)2)r(μ+ε)b2|X||Y|absentsuperscript𝜀superscript𝑘𝑡2𝑟superscript𝜇𝜀𝑏2𝑋𝑌\displaystyle\geq\left(\frac{\varepsilon}{(k+t)^{2}}\right)^{r}\frac{(\mu+%\varepsilon)^{b}}{2}|X||Y|≥ ( divide start_ARG italic_ε end_ARG start_ARG ( italic_k + italic_t ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ) start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT divide start_ARG ( italic_μ + italic_ε ) start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT end_ARG start_ARG 2 end_ARG | italic_X | | italic_Y |
(13)(ε(k+t)2)r(μ+ε)b2xkyμtsuperscriptitalic-(13italic-)absentsuperscript𝜀superscript𝑘𝑡2𝑟superscript𝜇𝜀𝑏2superscript𝑥𝑘superscript𝑦superscript𝜇𝑡\displaystyle\stackrel{{\scriptstyle\eqref{e:moment}}}{{\geq}}\left(\frac{%\varepsilon}{(k+t)^{2}}\right)^{r}\frac{(\mu+\varepsilon)^{b}}{2}x^{-k}y^{-%\ell}\mu^{-t}start_RELOP SUPERSCRIPTOP start_ARG ≥ end_ARG start_ARG italic_( italic_) end_ARG end_RELOP ( divide start_ARG italic_ε end_ARG start_ARG ( italic_k + italic_t ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ) start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT divide start_ARG ( italic_μ + italic_ε ) start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT end_ARG start_ARG 2 end_ARG italic_x start_POSTSUPERSCRIPT - italic_k end_POSTSUPERSCRIPT italic_y start_POSTSUPERSCRIPT - roman_ℓ end_POSTSUPERSCRIPT italic_μ start_POSTSUPERSCRIPT - italic_t end_POSTSUPERSCRIPT
=12(ε(k+t)2)r(μ+εμ)bxkyμt+babsent12superscript𝜀superscript𝑘𝑡2𝑟superscript𝜇𝜀𝜇𝑏superscript𝑥𝑘superscript𝑦superscript𝜇𝑡𝑏\displaystyle=\frac{1}{2}\left(\frac{\varepsilon}{(k+t)^{2}}\right)^{r}\left(%\frac{\mu+\varepsilon}{\mu}\right)^{b}x^{-k}y^{-\ell}\mu^{-t+b}= divide start_ARG 1 end_ARG start_ARG 2 end_ARG ( divide start_ARG italic_ε end_ARG start_ARG ( italic_k + italic_t ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ) start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT ( divide start_ARG italic_μ + italic_ε end_ARG start_ARG italic_μ end_ARG ) start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT italic_x start_POSTSUPERSCRIPT - italic_k end_POSTSUPERSCRIPT italic_y start_POSTSUPERSCRIPT - roman_ℓ end_POSTSUPERSCRIPT italic_μ start_POSTSUPERSCRIPT - italic_t + italic_b end_POSTSUPERSCRIPT
xkyμt+b,absentsuperscript𝑥𝑘superscript𝑦superscript𝜇𝑡𝑏\displaystyle\geq x^{-k}y^{-\ell}\mu^{-t+b},≥ italic_x start_POSTSUPERSCRIPT - italic_k end_POSTSUPERSCRIPT italic_y start_POSTSUPERSCRIPT - roman_ℓ end_POSTSUPERSCRIPT italic_μ start_POSTSUPERSCRIPT - italic_t + italic_b end_POSTSUPERSCRIPT ,

where the last inequality holds by the choice of b𝑏bitalic_b as

(μ+εμ)b(1+ε)b2((k+t)2ε)r.superscript𝜇𝜀𝜇𝑏superscript1𝜀𝑏2superscriptsuperscript𝑘𝑡2𝜀𝑟\left(\frac{\mu+\varepsilon}{\mu}\right)^{b}\geq(1+\varepsilon)^{b}\geq 2\left%(\frac{(k+t)^{2}}{\varepsilon}\right)^{r}.( divide start_ARG italic_μ + italic_ε end_ARG start_ARG italic_μ end_ARG ) start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT ≥ ( 1 + italic_ε ) start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT ≥ 2 ( divide start_ARG ( italic_k + italic_t ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_ε end_ARG ) start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT .

Thus (T,Y)𝑇𝑌(T,Y)( italic_T , italic_Y ) is (k,,tb)𝑘𝑡𝑏(k,\ell,t-b)( italic_k , roman_ℓ , italic_t - italic_b )-good by the induction hypothesis, implying that (X,Y)𝑋𝑌(X,Y)( italic_X , italic_Y ) is (k,,t)𝑘𝑡(k,\ell,t)( italic_k , roman_ℓ , italic_t )-good.

Thus we may assume that |W|w𝑊𝑤|W|\leq w| italic_W | ≤ italic_w. We now move on to the last part of the argument, corresponding to either the red step or the density increment step of the book algorithm, which are treated in the same way in our implementation.

Let p=pδk+t1pε.superscript𝑝𝑝subscript𝛿𝑘𝑡1𝑝𝜀p^{\prime}=p-\delta_{k+t-1}\geq p-\varepsilon.italic_p start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT = italic_p - italic_δ start_POSTSUBSCRIPT italic_k + italic_t - 1 end_POSTSUBSCRIPT ≥ italic_p - italic_ε . By 7, we have

vXd(X,NR(v)Y)|NR(v)Y|eR(X,Y)d(X,Y).subscript𝑣𝑋𝑑𝑋subscript𝑁𝑅𝑣𝑌subscript𝑁𝑅𝑣𝑌subscript𝑒𝑅𝑋𝑌𝑑𝑋𝑌\sum_{v\in X}d(X,N_{R}(v)\cap Y)|N_{R}(v)\cap Y|\geq e_{R}(X,Y)d(X,Y).∑ start_POSTSUBSCRIPT italic_v ∈ italic_X end_POSTSUBSCRIPT italic_d ( italic_X , italic_N start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ( italic_v ) ∩ italic_Y ) | italic_N start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ( italic_v ) ∩ italic_Y | ≥ italic_e start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ( italic_X , italic_Y ) italic_d ( italic_X , italic_Y ) .(17)

As

vWd(X,NR(x)Y)|NR(v)Y|w|Y|(16)ε(k+t)3(pε)|X||Y|ε(k+t)3eR(X,Y)subscript𝑣𝑊𝑑𝑋subscript𝑁𝑅𝑥𝑌subscript𝑁𝑅𝑣𝑌𝑤𝑌superscriptitalic-(16italic-)𝜀superscript𝑘𝑡3𝑝𝜀𝑋𝑌𝜀superscript𝑘𝑡3subscript𝑒𝑅𝑋𝑌\sum_{v\in W}d(X,N_{R}(x)\cap Y)|N_{R}(v)\cap Y|\leq w|Y|\stackrel{{%\scriptstyle\eqref{e:x2}}}{{\leq}}\frac{\varepsilon}{(k+t)^{3}}(p-\varepsilon)%|X||Y|\leq\frac{\varepsilon}{(k+t)^{3}}e_{R}(X,Y)∑ start_POSTSUBSCRIPT italic_v ∈ italic_W end_POSTSUBSCRIPT italic_d ( italic_X , italic_N start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ( italic_x ) ∩ italic_Y ) | italic_N start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ( italic_v ) ∩ italic_Y | ≤ italic_w | italic_Y | start_RELOP SUPERSCRIPTOP start_ARG ≤ end_ARG start_ARG italic_( italic_) end_ARG end_RELOP divide start_ARG italic_ε end_ARG start_ARG ( italic_k + italic_t ) start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG ( italic_p - italic_ε ) | italic_X | | italic_Y | ≤ divide start_ARG italic_ε end_ARG start_ARG ( italic_k + italic_t ) start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG italic_e start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ( italic_X , italic_Y )

we have

vXWd(X,NR(v)Y)|NR(x)Y|(d(X,Y)ε(k+t)3)eR(X,Y).subscript𝑣𝑋𝑊𝑑𝑋subscript𝑁𝑅𝑣𝑌subscript𝑁𝑅𝑥𝑌𝑑𝑋𝑌𝜀superscript𝑘𝑡3subscript𝑒𝑅𝑋𝑌\sum_{v\in X-W}d(X,N_{R}(v)\cap Y)|N_{R}(x)\cap Y|\geq\left(d(X,Y)-\frac{%\varepsilon}{(k+t)^{3}}\right)e_{R}(X,Y).∑ start_POSTSUBSCRIPT italic_v ∈ italic_X - italic_W end_POSTSUBSCRIPT italic_d ( italic_X , italic_N start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ( italic_v ) ∩ italic_Y ) | italic_N start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ( italic_x ) ∩ italic_Y | ≥ ( italic_d ( italic_X , italic_Y ) - divide start_ARG italic_ε end_ARG start_ARG ( italic_k + italic_t ) start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG ) italic_e start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ( italic_X , italic_Y ) .

Thus there exists vX𝑣𝑋v\in Xitalic_v ∈ italic_X such that |NB(v)X|(μ+ε)|X|subscript𝑁𝐵𝑣𝑋𝜇𝜀𝑋|N_{B}(v)\cap X|\leq(\mu+\varepsilon)|X|| italic_N start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT ( italic_v ) ∩ italic_X | ≤ ( italic_μ + italic_ε ) | italic_X | and

d(X,NR(v)Y)d(X,Y)ε(k+t)3.𝑑𝑋subscript𝑁𝑅𝑣𝑌𝑑𝑋𝑌𝜀superscript𝑘𝑡3d(X,N_{R}(v)\cap Y)\geq d(X,Y)-\frac{\varepsilon}{(k+t)^{3}}.italic_d ( italic_X , italic_N start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ( italic_v ) ∩ italic_Y ) ≥ italic_d ( italic_X , italic_Y ) - divide start_ARG italic_ε end_ARG start_ARG ( italic_k + italic_t ) start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG .(18)

Let

XR=NR(v)X,subscript𝑋𝑅subscript𝑁𝑅𝑣𝑋\displaystyle X_{R}=N_{R}(v)\cap X,\qquaditalic_X start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT = italic_N start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ( italic_v ) ∩ italic_X ,XB=NB(v)X,subscript𝑋𝐵subscript𝑁𝐵𝑣𝑋\displaystyle X_{B}=N_{B}(v)\cap X,\qquaditalic_X start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT = italic_N start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT ( italic_v ) ∩ italic_X ,Y=NR(v)Y,superscript𝑌subscript𝑁𝑅𝑣𝑌\displaystyle Y^{\prime}=N_{R}(v)\cap Y,italic_Y start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT = italic_N start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ( italic_v ) ∩ italic_Y ,
α=d(X,Y)p,𝛼𝑑𝑋superscript𝑌superscript𝑝\displaystyle\alpha=d(X,Y^{\prime})-p^{\prime},\qquaditalic_α = italic_d ( italic_X , italic_Y start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) - italic_p start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ,αR=d(XR,Y)p,subscript𝛼𝑅𝑑subscript𝑋𝑅superscript𝑌superscript𝑝\displaystyle\alpha_{R}=d(X_{R},Y^{\prime})-p^{\prime},\qquaditalic_α start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT = italic_d ( italic_X start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT , italic_Y start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) - italic_p start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ,αB=d(XB,Y)p.subscript𝛼𝐵𝑑subscript𝑋𝐵superscript𝑌superscript𝑝\displaystyle\alpha_{B}=d(X_{B},Y^{\prime})-p^{\prime}.italic_α start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT = italic_d ( italic_X start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT , italic_Y start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) - italic_p start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT .

Note that |Y|(pε)|Y|superscript𝑌𝑝𝜀𝑌|Y^{\prime}|\geq(p-\varepsilon)|Y|| italic_Y start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT | ≥ ( italic_p - italic_ε ) | italic_Y | by (14), and

(αR\displaystyle(\alpha_{R}( italic_α start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT|XR|+αB|XB|+1)|Y|\displaystyle|X_{R}|+\alpha_{B}|X_{B}|+1)|Y^{\prime}|| italic_X start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT | + italic_α start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT | italic_X start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT | + 1 ) | italic_Y start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT |
=(eR(XR,Y)+eR(XB,Y)+eR({v},Y))p(|XR|+|XB|)|Y|absentsubscript𝑒𝑅subscript𝑋𝑅superscript𝑌subscript𝑒𝑅subscript𝑋𝐵superscript𝑌subscript𝑒𝑅𝑣superscript𝑌superscript𝑝subscript𝑋𝑅subscript𝑋𝐵superscript𝑌\displaystyle=(e_{R}(X_{R},Y^{\prime})+e_{R}(X_{B},Y^{\prime})+e_{R}(\{v\},Y^{%\prime}))-p^{\prime}(|X_{R}|+|X_{B}|)|Y^{\prime}|= ( italic_e start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ( italic_X start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT , italic_Y start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) + italic_e start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ( italic_X start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT , italic_Y start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) + italic_e start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ( { italic_v } , italic_Y start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ) - italic_p start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( | italic_X start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT | + | italic_X start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT | ) | italic_Y start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT |
eR(X,Y)p|X||Y|=α|X|||Y|,\displaystyle\geq e_{R}(X,Y^{\prime})-p^{\prime}|X||Y^{\prime}|=\alpha|X|||Y^{%\prime}|,≥ italic_e start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ( italic_X , italic_Y start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) - italic_p start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT | italic_X | | italic_Y start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT | = italic_α | italic_X | | | italic_Y start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT | ,

implying

αRα|XR||X|+αBα|XB||X|+1α|X|1.subscript𝛼𝑅𝛼subscript𝑋𝑅𝑋subscript𝛼𝐵𝛼subscript𝑋𝐵𝑋1𝛼𝑋1\frac{\alpha_{R}}{\alpha}\frac{|X_{R}|}{|X|}+\frac{\alpha_{B}}{\alpha}\frac{|X%_{B}|}{|X|}+\frac{1}{\alpha|X|}\geq 1.divide start_ARG italic_α start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT end_ARG start_ARG italic_α end_ARG divide start_ARG | italic_X start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT | end_ARG start_ARG | italic_X | end_ARG + divide start_ARG italic_α start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT end_ARG start_ARG italic_α end_ARG divide start_ARG | italic_X start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT | end_ARG start_ARG | italic_X | end_ARG + divide start_ARG 1 end_ARG start_ARG italic_α | italic_X | end_ARG ≥ 1 .(19)

If αR0subscript𝛼𝑅0\alpha_{R}\geq 0italic_α start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ≥ 0 andαRr|XR|xαr|X|pεsuperscriptsubscript𝛼𝑅𝑟subscript𝑋𝑅𝑥superscript𝛼𝑟𝑋𝑝𝜀\alpha_{R}^{r}|X_{R}|\geq\frac{x\alpha^{r}|X|}{p-\varepsilon}italic_α start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT | italic_X start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT | ≥ divide start_ARG italic_x italic_α start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT | italic_X | end_ARG start_ARG italic_p - italic_ε end_ARG then

(d(XR,Y)p)r|XR||Y|superscript𝑑subscript𝑋𝑅superscript𝑌superscript𝑝𝑟subscript𝑋𝑅superscript𝑌\displaystyle(d(X_{R},Y^{\prime})-p^{\prime})^{r}|X_{R}||Y^{\prime}|( italic_d ( italic_X start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT , italic_Y start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) - italic_p start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT | italic_X start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT | | italic_Y start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT |=αRr|XR||Y|x(d(X,Y)p)r|X||Y|pεabsentsuperscriptsubscript𝛼𝑅𝑟subscript𝑋𝑅superscript𝑌𝑥superscript𝑑𝑋superscript𝑌superscript𝑝𝑟𝑋superscript𝑌𝑝𝜀\displaystyle=\alpha_{R}^{r}|X_{R}||Y^{\prime}|\geq x(d(X,Y^{\prime})-p^{%\prime})^{r}|X|\frac{|Y^{\prime}|}{p-\varepsilon}= italic_α start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT | italic_X start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT | | italic_Y start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT | ≥ italic_x ( italic_d ( italic_X , italic_Y start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) - italic_p start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT | italic_X | divide start_ARG | italic_Y start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT | end_ARG start_ARG italic_p - italic_ε end_ARG
(18)x(d(X,Y)ε(k+t)3+δk+t1p)r|X||Y|superscriptitalic-(18italic-)absent𝑥superscript𝑑𝑋𝑌𝜀superscript𝑘𝑡3subscript𝛿𝑘𝑡1𝑝𝑟𝑋𝑌\displaystyle\stackrel{{\scriptstyle\eqref{e:alpha}}}{{\geq}}x\left(d(X,Y)-%\frac{\varepsilon}{(k+t)^{3}}+\delta_{k+t-1}-p\right)^{r}|X||Y|start_RELOP SUPERSCRIPTOP start_ARG ≥ end_ARG start_ARG italic_( italic_) end_ARG end_RELOP italic_x ( italic_d ( italic_X , italic_Y ) - divide start_ARG italic_ε end_ARG start_ARG ( italic_k + italic_t ) start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG + italic_δ start_POSTSUBSCRIPT italic_k + italic_t - 1 end_POSTSUBSCRIPT - italic_p ) start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT | italic_X | | italic_Y |
x(d(X,Y)+δk+tp)r|X||Y|xk+1yμt.absent𝑥superscript𝑑𝑋𝑌subscript𝛿𝑘𝑡𝑝𝑟𝑋𝑌superscript𝑥𝑘1superscript𝑦superscript𝜇𝑡\displaystyle\geq x(d(X,Y)+\delta_{k+t}-p)^{r}|X||Y|{\geq}x^{-k+1}y^{-\ell}\mu%^{-t}.≥ italic_x ( italic_d ( italic_X , italic_Y ) + italic_δ start_POSTSUBSCRIPT italic_k + italic_t end_POSTSUBSCRIPT - italic_p ) start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT | italic_X | | italic_Y | ≥ italic_x start_POSTSUPERSCRIPT - italic_k + 1 end_POSTSUPERSCRIPT italic_y start_POSTSUPERSCRIPT - roman_ℓ end_POSTSUPERSCRIPT italic_μ start_POSTSUPERSCRIPT - italic_t end_POSTSUPERSCRIPT .

This implies that (XR,Y)subscript𝑋𝑅superscript𝑌(X_{R},Y^{\prime})( italic_X start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT , italic_Y start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) is (k1,,t)𝑘1𝑡(k-1,\ell,t)( italic_k - 1 , roman_ℓ , italic_t )-good by the induction hypothesis, and so (X,Y)𝑋𝑌(X,Y)( italic_X , italic_Y ) is (k,,t)𝑘𝑡(k,\ell,t)( italic_k , roman_ℓ , italic_t )-good.

Thus we may assume that either αR<0subscript𝛼𝑅0\alpha_{R}<0italic_α start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT < 0 or αRr|XR|<xαr|X|pεsuperscriptsubscript𝛼𝑅𝑟subscript𝑋𝑅𝑥superscript𝛼𝑟𝑋𝑝𝜀\alpha_{R}^{r}|X_{R}|<\frac{x\alpha^{r}|X|}{p-\varepsilon}italic_α start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT | italic_X start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT | < divide start_ARG italic_x italic_α start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT | italic_X | end_ARG start_ARG italic_p - italic_ε end_ARG, i.e.

αRα<x1/r(pε)1/r(|X||XR|)1/r.subscript𝛼𝑅𝛼superscript𝑥1𝑟superscript𝑝𝜀1𝑟superscript𝑋subscript𝑋𝑅1𝑟\frac{\alpha_{R}}{\alpha}<x^{1/r}(p-\varepsilon)^{-1/r}\left(\frac{|X|}{|X_{R}%|}\right)^{1/r}.divide start_ARG italic_α start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT end_ARG start_ARG italic_α end_ARG < italic_x start_POSTSUPERSCRIPT 1 / italic_r end_POSTSUPERSCRIPT ( italic_p - italic_ε ) start_POSTSUPERSCRIPT - 1 / italic_r end_POSTSUPERSCRIPT ( divide start_ARG | italic_X | end_ARG start_ARG | italic_X start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT | end_ARG ) start_POSTSUPERSCRIPT 1 / italic_r end_POSTSUPERSCRIPT .

Symmetrically, we also have

αBα<μ1/r(pε)1/r(|X||XB|)1/r.subscript𝛼𝐵𝛼superscript𝜇1𝑟superscript𝑝𝜀1𝑟superscript𝑋subscript𝑋𝐵1𝑟\frac{\alpha_{B}}{\alpha}<\mu^{1/r}(p-\varepsilon)^{-1/r}\left(\frac{|X|}{|X_{%B}|}\right)^{1/r}.divide start_ARG italic_α start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT end_ARG start_ARG italic_α end_ARG < italic_μ start_POSTSUPERSCRIPT 1 / italic_r end_POSTSUPERSCRIPT ( italic_p - italic_ε ) start_POSTSUPERSCRIPT - 1 / italic_r end_POSTSUPERSCRIPT ( divide start_ARG | italic_X | end_ARG start_ARG | italic_X start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT | end_ARG ) start_POSTSUPERSCRIPT 1 / italic_r end_POSTSUPERSCRIPT .

It follows from (19) that

x1/r(|XR||X|)11/r+μ1/r(|XB||X|)11/r+(pε)1/rα|X|>(pε)1/r.superscript𝑥1𝑟superscriptsubscript𝑋𝑅𝑋11𝑟superscript𝜇1𝑟superscriptsubscript𝑋𝐵𝑋11𝑟superscript𝑝𝜀1𝑟𝛼𝑋superscript𝑝𝜀1𝑟x^{1/r}\left(\frac{|X_{R}|}{|X|}\right)^{1-1/r}+\mu^{1/r}\left(\frac{|X_{B}|}{%|X|}\right)^{1-1/r}+\frac{(p-\varepsilon)^{1/r}}{\alpha|X|}>(p-\varepsilon)^{1%/r}.italic_x start_POSTSUPERSCRIPT 1 / italic_r end_POSTSUPERSCRIPT ( divide start_ARG | italic_X start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT | end_ARG start_ARG | italic_X | end_ARG ) start_POSTSUPERSCRIPT 1 - 1 / italic_r end_POSTSUPERSCRIPT + italic_μ start_POSTSUPERSCRIPT 1 / italic_r end_POSTSUPERSCRIPT ( divide start_ARG | italic_X start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT | end_ARG start_ARG | italic_X | end_ARG ) start_POSTSUPERSCRIPT 1 - 1 / italic_r end_POSTSUPERSCRIPT + divide start_ARG ( italic_p - italic_ε ) start_POSTSUPERSCRIPT 1 / italic_r end_POSTSUPERSCRIPT end_ARG start_ARG italic_α | italic_X | end_ARG > ( italic_p - italic_ε ) start_POSTSUPERSCRIPT 1 / italic_r end_POSTSUPERSCRIPT .(20)

The remainder of the proof is occupied with showing that (20) contradicts (11).As |XR||X|+|XB||X||X|subscript𝑋𝑅𝑋subscript𝑋𝐵𝑋𝑋\frac{|X_{R}|}{|X|}+\frac{|X_{B}|}{|X|}\leq|X|divide start_ARG | italic_X start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT | end_ARG start_ARG | italic_X | end_ARG + divide start_ARG | italic_X start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT | end_ARG start_ARG | italic_X | end_ARG ≤ | italic_X |, |XB||X|(μ+ε)subscript𝑋𝐵𝑋𝜇𝜀\frac{|X_{B}|}{|X|}\leq(\mu+\varepsilon)divide start_ARG | italic_X start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT | end_ARG start_ARG | italic_X | end_ARG ≤ ( italic_μ + italic_ε ), the function λx1/r(1λ)11/r+μ1/rλ11/r𝜆superscript𝑥1𝑟superscript1𝜆11𝑟superscript𝜇1𝑟superscript𝜆11𝑟\lambda\to x^{1/r}(1-\lambda)^{1-1/r}+\mu^{1/r}\lambda^{1-1/r}italic_λ → italic_x start_POSTSUPERSCRIPT 1 / italic_r end_POSTSUPERSCRIPT ( 1 - italic_λ ) start_POSTSUPERSCRIPT 1 - 1 / italic_r end_POSTSUPERSCRIPT + italic_μ start_POSTSUPERSCRIPT 1 / italic_r end_POSTSUPERSCRIPT italic_λ start_POSTSUPERSCRIPT 1 - 1 / italic_r end_POSTSUPERSCRIPT increases for 0λμμ+x0𝜆𝜇𝜇𝑥0\leq\lambda\leq\frac{\mu}{\mu+x}0 ≤ italic_λ ≤ divide start_ARG italic_μ end_ARG start_ARG italic_μ + italic_x end_ARG and μ+εμμ+x𝜇𝜀𝜇𝜇𝑥\mu+\varepsilon\leq\frac{\mu}{\mu+x}italic_μ + italic_ε ≤ divide start_ARG italic_μ end_ARG start_ARG italic_μ + italic_x end_ARG we can lower bound the left side of (20) by replacing |XB||X|subscript𝑋𝐵𝑋\frac{|X_{B}|}{|X|}divide start_ARG | italic_X start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT | end_ARG start_ARG | italic_X | end_ARG by μ+ε𝜇𝜀\mu+\varepsilonitalic_μ + italic_ε and |XR||X|subscript𝑋𝑅𝑋\frac{|X_{R}|}{|X|}divide start_ARG | italic_X start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT | end_ARG start_ARG | italic_X | end_ARG by 1μ1𝜇1-\mu1 - italic_μ, implying

x1/r(1μ)11/r+μ+ε+(pε)1/rα|X|(pε)1/r.superscript𝑥1𝑟superscript1𝜇11𝑟𝜇𝜀superscript𝑝𝜀1𝑟𝛼𝑋superscript𝑝𝜀1𝑟x^{1/r}(1-\mu)^{1-1/r}+\mu+\varepsilon+\frac{(p-\varepsilon)^{1/r}}{\alpha|X|}%\geq(p-\varepsilon)^{1/r}.italic_x start_POSTSUPERSCRIPT 1 / italic_r end_POSTSUPERSCRIPT ( 1 - italic_μ ) start_POSTSUPERSCRIPT 1 - 1 / italic_r end_POSTSUPERSCRIPT + italic_μ + italic_ε + divide start_ARG ( italic_p - italic_ε ) start_POSTSUPERSCRIPT 1 / italic_r end_POSTSUPERSCRIPT end_ARG start_ARG italic_α | italic_X | end_ARG ≥ ( italic_p - italic_ε ) start_POSTSUPERSCRIPT 1 / italic_r end_POSTSUPERSCRIPT .(21)

Note that

α𝛼\displaystyle\alphaitalic_α=d(X,Y)p(18)d(X,Y)ε(k+t)3+δk+t1pabsent𝑑𝑋superscript𝑌superscript𝑝superscriptitalic-(18italic-)𝑑𝑋𝑌𝜀superscript𝑘𝑡3subscript𝛿𝑘𝑡1𝑝\displaystyle=d(X,Y^{\prime})-p^{\prime}\stackrel{{\scriptstyle\eqref{e:alpha}%}}{{\geq}}d(X,Y)-\frac{\varepsilon}{(k+t)^{3}}+\delta_{k+t-1}-p= italic_d ( italic_X , italic_Y start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) - italic_p start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_RELOP SUPERSCRIPTOP start_ARG ≥ end_ARG start_ARG italic_( italic_) end_ARG end_RELOP italic_d ( italic_X , italic_Y ) - divide start_ARG italic_ε end_ARG start_ARG ( italic_k + italic_t ) start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG + italic_δ start_POSTSUBSCRIPT italic_k + italic_t - 1 end_POSTSUBSCRIPT - italic_p
δk+t1δk+tε(k+t)3=ε(k+t)(k+t1)ε(k+t)3ε(k+t)2,absentsubscript𝛿𝑘𝑡1subscript𝛿𝑘𝑡𝜀superscript𝑘𝑡3𝜀𝑘𝑡𝑘𝑡1𝜀superscript𝑘𝑡3𝜀superscript𝑘𝑡2\displaystyle\geq\delta_{k+t-1}-\delta_{k+t}-\frac{\varepsilon}{(k+t)^{3}}=%\frac{\varepsilon}{(k+t)(k+t-1)}-\frac{\varepsilon}{(k+t)^{3}}\geq\frac{%\varepsilon}{(k+t)^{2}},≥ italic_δ start_POSTSUBSCRIPT italic_k + italic_t - 1 end_POSTSUBSCRIPT - italic_δ start_POSTSUBSCRIPT italic_k + italic_t end_POSTSUBSCRIPT - divide start_ARG italic_ε end_ARG start_ARG ( italic_k + italic_t ) start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG = divide start_ARG italic_ε end_ARG start_ARG ( italic_k + italic_t ) ( italic_k + italic_t - 1 ) end_ARG - divide start_ARG italic_ε end_ARG start_ARG ( italic_k + italic_t ) start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG ≥ divide start_ARG italic_ε end_ARG start_ARG ( italic_k + italic_t ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ,

and so

(pε)1/rα|X|(3)(k+t)2ε(1+ε)k++tε,superscriptitalic-(3italic-)superscript𝑝𝜀1𝑟𝛼𝑋superscript𝑘𝑡2𝜀superscript1𝜀𝑘𝑡𝜀\frac{(p-\varepsilon)^{1/r}}{\alpha|X|}\stackrel{{\scriptstyle\eqref{e:x}}}{{%\leq}}\frac{(k+t)^{2}}{\varepsilon(1+\varepsilon)^{k+\ell+t}}\leq\varepsilon,divide start_ARG ( italic_p - italic_ε ) start_POSTSUPERSCRIPT 1 / italic_r end_POSTSUPERSCRIPT end_ARG start_ARG italic_α | italic_X | end_ARG start_RELOP SUPERSCRIPTOP start_ARG ≤ end_ARG start_ARG italic_( italic_) end_ARG end_RELOP divide start_ARG ( italic_k + italic_t ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_ε ( 1 + italic_ε ) start_POSTSUPERSCRIPT italic_k + roman_ℓ + italic_t end_POSTSUPERSCRIPT end_ARG ≤ italic_ε ,

where the last inequality holds whenever L0subscript𝐿0L_{0}italic_L start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT (and thus \ellroman_ℓ) is large enough as a function of ε𝜀\varepsilonitalic_ε.It follows that (21) in turn impliesx1/r(1μ)11/r+μ+2ε(pε)1/r,superscript𝑥1𝑟superscript1𝜇11𝑟𝜇2𝜀superscript𝑝𝜀1𝑟x^{1/r}(1-\mu)^{1-1/r}+\mu+2\varepsilon\geq(p-\varepsilon)^{1/r},italic_x start_POSTSUPERSCRIPT 1 / italic_r end_POSTSUPERSCRIPT ( 1 - italic_μ ) start_POSTSUPERSCRIPT 1 - 1 / italic_r end_POSTSUPERSCRIPT + italic_μ + 2 italic_ε ≥ ( italic_p - italic_ε ) start_POSTSUPERSCRIPT 1 / italic_r end_POSTSUPERSCRIPT , i.e.

x((pε)1/rμ2ε)r(1μ)1r𝑥superscriptsuperscript𝑝𝜀1𝑟𝜇2𝜀𝑟superscript1𝜇1𝑟x\geq((p-\varepsilon)^{1/r}-\mu-2\varepsilon)^{r}(1-\mu)^{1-r}italic_x ≥ ( ( italic_p - italic_ε ) start_POSTSUPERSCRIPT 1 / italic_r end_POSTSUPERSCRIPT - italic_μ - 2 italic_ε ) start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT ( 1 - italic_μ ) start_POSTSUPERSCRIPT 1 - italic_r end_POSTSUPERSCRIPT

contradicting (11).∎

The main result of this section follows immediately from 11.

Theorem 12.

For all 0<μ,x,y,p<1formulae-sequence0𝜇𝑥𝑦𝑝10<\mu,x,y,p<10 < italic_μ , italic_x , italic_y , italic_p < 1 such that x<p11μ(1μ)𝑥superscript𝑝11𝜇1𝜇x<p^{\frac{1}{1-\mu}}(1-\mu)italic_x < italic_p start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 1 - italic_μ end_ARG end_POSTSUPERSCRIPT ( 1 - italic_μ ) and (x,y)𝑥𝑦subscript(x,y)\in\mathcal{R_{*}}( italic_x , italic_y ) ∈ caligraphic_R start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT there exists L0subscript𝐿0L_{0}italic_L start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT such that for all positive integers k,𝑘k,\ellitalic_k , roman_ℓ with L0subscript𝐿0\ell\geq L_{0}roman_ℓ ≥ italic_L start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT the following holds. Every red-blue coloring of edges the complete graph on Nxk/2(μy)/2𝑁superscript𝑥𝑘2superscript𝜇𝑦2N\geq x^{-k/2}(\mu y)^{-\ell/2}italic_N ≥ italic_x start_POSTSUPERSCRIPT - italic_k / 2 end_POSTSUPERSCRIPT ( italic_μ italic_y ) start_POSTSUPERSCRIPT - roman_ℓ / 2 end_POSTSUPERSCRIPT with the density of red edges at least p𝑝pitalic_p contains a red Kksubscript𝐾𝑘K_{k}italic_K start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT or a blue Ksubscript𝐾K_{\ell}italic_K start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT.

Proof.

Let y0>ysubscript𝑦0𝑦y_{0}>yitalic_y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT > italic_y such that (x,y0)𝑥subscript𝑦0subscript(x,y_{0})\in\mathcal{R_{*}}( italic_x , italic_y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) ∈ caligraphic_R start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT and let L0subscript𝐿0L_{0}italic_L start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT be chosen sufficiently large to satisfy the requirements below including the condition (y0/y)/23superscriptsubscript𝑦0𝑦23(y_{0}/y)^{\ell/2}\geq 3( italic_y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT / italic_y ) start_POSTSUPERSCRIPT roman_ℓ / 2 end_POSTSUPERSCRIPT ≥ 3 for L0subscript𝐿0\ell\geq L_{0}roman_ℓ ≥ italic_L start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT. Then Nxk/2(μy)/22xk/2(μy0)/2+1𝑁superscript𝑥𝑘2superscript𝜇𝑦22superscript𝑥𝑘2superscript𝜇subscript𝑦021N\geq x^{-k/2}(\mu y)^{-\ell/2}\geq 2x^{-k/2}(\mu y_{0})^{-\ell/2}+1italic_N ≥ italic_x start_POSTSUPERSCRIPT - italic_k / 2 end_POSTSUPERSCRIPT ( italic_μ italic_y ) start_POSTSUPERSCRIPT - roman_ℓ / 2 end_POSTSUPERSCRIPT ≥ 2 italic_x start_POSTSUPERSCRIPT - italic_k / 2 end_POSTSUPERSCRIPT ( italic_μ italic_y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT - roman_ℓ / 2 end_POSTSUPERSCRIPT + 1, and so N/2xk/2(μy0)/2𝑁2superscript𝑥𝑘2superscript𝜇subscript𝑦02\lfloor N/2\rfloor\geq x^{-k/2}(\mu y_{0})^{-\ell/2}⌊ italic_N / 2 ⌋ ≥ italic_x start_POSTSUPERSCRIPT - italic_k / 2 end_POSTSUPERSCRIPT ( italic_μ italic_y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT - roman_ℓ / 2 end_POSTSUPERSCRIPT. Let X𝑋Xitalic_X and Y𝑌Yitalic_Y be two disjoint subsets of vertices of our graph each of size N/2𝑁2\lfloor N/2\rfloor⌊ italic_N / 2 ⌋ chosen to maximize d(X,Y)𝑑𝑋𝑌d(X,Y)italic_d ( italic_X , italic_Y ). Then d(X,Y)p𝑑𝑋𝑌𝑝d(X,Y)\geq pitalic_d ( italic_X , italic_Y ) ≥ italic_p and |X||Y|=(N/2)2xky0μ𝑋𝑌superscript𝑁22superscript𝑥𝑘superscriptsubscript𝑦0superscript𝜇|X||Y|=(\lfloor N/2\rfloor)^{2}\geq x^{-k}y_{0}^{-\ell}\mu^{-\ell}| italic_X | | italic_Y | = ( ⌊ italic_N / 2 ⌋ ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ≥ italic_x start_POSTSUPERSCRIPT - italic_k end_POSTSUPERSCRIPT italic_y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - roman_ℓ end_POSTSUPERSCRIPT italic_μ start_POSTSUPERSCRIPT - roman_ℓ end_POSTSUPERSCRIPT. The theorem follows by applying 11 to the candidate (X,Y)𝑋𝑌(X,Y)( italic_X , italic_Y ) with x0=x,μ0=μformulae-sequencesubscript𝑥0𝑥subscript𝜇0𝜇x_{0}=x,\mu_{0}=\muitalic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = italic_x , italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = italic_μ.∎

4. Optimizing descent to a candidate

In this section we derive our main result from 12 in the same manner that 5 was derived from 4 in Section2: By using induction on \ellroman_ℓ with the induction hypothesis applied to the blue neighborhood of a vertex, if the density of red edges is insufficiently high to apply 12.

We express our upper bound on Ramsey numbers R(k,)𝑅𝑘R(k,\ell)italic_R ( italic_k , roman_ℓ ) with k𝑘\ell\leq kroman_ℓ ≤ italic_k in the form eF(/k)k+o(k)superscript𝑒𝐹𝑘𝑘𝑜𝑘e^{F(\ell/k)k~{}+~{}o(k)}italic_e start_POSTSUPERSCRIPT italic_F ( roman_ℓ / italic_k ) italic_k + italic_o ( italic_k ) end_POSTSUPERSCRIPT and seek to minimize F𝐹Fitalic_F. As eF((1)/k)k+o(k)/eF(/k)k+o(k)eF(/k),superscript𝑒𝐹1𝑘𝑘𝑜𝑘superscript𝑒𝐹𝑘𝑘𝑜𝑘superscript𝑒superscript𝐹𝑘e^{F((\ell-1)/k)k~{}+~{}o(k)}/e^{F(\ell/k)k~{}+~{}o(k)}\approx e^{-F^{\prime}(%\ell/k)},italic_e start_POSTSUPERSCRIPT italic_F ( ( roman_ℓ - 1 ) / italic_k ) italic_k + italic_o ( italic_k ) end_POSTSUPERSCRIPT / italic_e start_POSTSUPERSCRIPT italic_F ( roman_ℓ / italic_k ) italic_k + italic_o ( italic_k ) end_POSTSUPERSCRIPT ≈ italic_e start_POSTSUPERSCRIPT - italic_F start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( roman_ℓ / italic_k ) end_POSTSUPERSCRIPT , we can use the induction hypothesis if the density of blue edges is about eF(/k)superscript𝑒superscript𝐹𝑘e^{-F^{\prime}(\ell/k)}italic_e start_POSTSUPERSCRIPT - italic_F start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( roman_ℓ / italic_k ) end_POSTSUPERSCRIPT. Thus we will be applying 12 when the density of red edges is at least 1eF(/k)1superscript𝑒superscript𝐹𝑘1-e^{-F^{\prime}(\ell/k)}1 - italic_e start_POSTSUPERSCRIPT - italic_F start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( roman_ℓ / italic_k ) end_POSTSUPERSCRIPT. The parameters x,y𝑥𝑦x,yitalic_x , italic_y and m𝑚mitalic_m are then chosen as functions of /k𝑘\ell/kroman_ℓ / italic_k to satisfy the requirements in 12. We formalize this strategy in the following theorem.

Theorem 13.

Let F:(0,1]+:𝐹01subscriptF:(0,1]\to\mathbb{R}_{+}italic_F : ( 0 , 1 ] → blackboard_R start_POSTSUBSCRIPT + end_POSTSUBSCRIPT be smooth and let M,X,Y:(0,1](0,1):𝑀𝑋𝑌0101M,X,Y:(0,1]\to(0,1)italic_M , italic_X , italic_Y : ( 0 , 1 ] → ( 0 , 1 ) be such that

F(λ)<0,X(λ)=(1eF(λ))11M(λ)(1M(λ)),(X(λ),Y(λ)),formulae-sequencesuperscript𝐹𝜆0formulae-sequence𝑋𝜆superscript1superscript𝑒superscript𝐹𝜆11𝑀𝜆1𝑀𝜆𝑋𝜆𝑌𝜆\displaystyle F^{\prime}(\lambda)<0,\qquad X(\lambda)=(1-e^{-F^{\prime}(%\lambda)})^{\frac{1}{1-M(\lambda)}}(1-M(\lambda)),\qquad(X(\lambda),Y(\lambda)%)\in\mathcal{R},italic_F start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_λ ) < 0 , italic_X ( italic_λ ) = ( 1 - italic_e start_POSTSUPERSCRIPT - italic_F start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_λ ) end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 1 - italic_M ( italic_λ ) end_ARG end_POSTSUPERSCRIPT ( 1 - italic_M ( italic_λ ) ) , ( italic_X ( italic_λ ) , italic_Y ( italic_λ ) ) ∈ caligraphic_R ,
andF(λ)>